Accessible Gesture Typing on Smartphones for People with Low Vision.

Dan Zhang, William H Seiple, Zhi Li, I V Ramakrishnan, Vikas Ashok, Xiaojun Bi
{"title":"Accessible Gesture Typing on Smartphones for People with Low Vision.","authors":"Dan Zhang, William H Seiple, Zhi Li, I V Ramakrishnan, Vikas Ashok, Xiaojun Bi","doi":"10.1145/3654777.3676447","DOIUrl":null,"url":null,"abstract":"<p><p>While gesture typing is widely adopted on touchscreen keyboards, its support for low vision users is limited. We have designed and implemented two keyboard prototypes, layout-magnified and key-magnified keyboards, to enable gesture typing for people with low vision. Both keyboards facilitate uninterrupted access to all keys while the screen magnifier is active, allowing people with low vision to input text with one continuous stroke. Furthermore, we have created a kinematics-based decoding algorithm to accommodate the typing behavior of people with low vision. This algorithm can decode the gesture input even if the gesture trace deviates from a pre-defined word template, and the starting position of the gesture is far from the starting letter of the target word. Our user study showed that the key-magnified keyboard achieved 5.28 words per minute, 27.5% faster than a conventional gesture typing keyboard with voice feedback.</p>","PeriodicalId":93361,"journal":{"name":"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on User Interface Software and Technology. ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3654777.3676447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While gesture typing is widely adopted on touchscreen keyboards, its support for low vision users is limited. We have designed and implemented two keyboard prototypes, layout-magnified and key-magnified keyboards, to enable gesture typing for people with low vision. Both keyboards facilitate uninterrupted access to all keys while the screen magnifier is active, allowing people with low vision to input text with one continuous stroke. Furthermore, we have created a kinematics-based decoding algorithm to accommodate the typing behavior of people with low vision. This algorithm can decode the gesture input even if the gesture trace deviates from a pre-defined word template, and the starting position of the gesture is far from the starting letter of the target word. Our user study showed that the key-magnified keyboard achieved 5.28 words per minute, 27.5% faster than a conventional gesture typing keyboard with voice feedback.

低视力人士在智能手机上的无障碍手势输入。
虽然手势输入在触摸屏键盘上被广泛采用,但它对低视力用户的支持有限。我们设计并实现了两种键盘原型,布局放大键盘和按键放大键盘,为弱视人士提供手势输入功能。两个键盘方便不间断地访问所有键,而屏幕放大镜是活跃的,允许低视力的人输入文字与一个连续的stroke。此外,我们还创建了一种基于运动学的解码算法,以适应低视力人群的打字行为。即使手势轨迹偏离预定义的单词模板,并且手势的起始位置远离目标单词的起始字母,该算法也可以对手势输入进行解码。我们的用户研究表明,放大键键盘每分钟可输入5.28个单词,比带语音反馈的传统手势打字键盘快27.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信