Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ning Lin, Shaocong Wang, Yi Li, Bo Wang, Shuhui Shi, Yangu He, Woyu Zhang, Yifei Yu, Yue Zhang, Xinyuan Zhang, Kwunhang Wong, Songqi Wang, Xiaoming Chen, Hao Jiang, Xumeng Zhang, Peng Lin, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Dashan Shang, Qi Liu, Ming Liu
{"title":"Resistive memory-based zero-shot liquid state machine for multimodal event data learning.","authors":"Ning Lin, Shaocong Wang, Yi Li, Bo Wang, Shuhui Shi, Yangu He, Woyu Zhang, Yifei Yu, Yue Zhang, Xinyuan Zhang, Kwunhang Wong, Songqi Wang, Xiaoming Chen, Hao Jiang, Xumeng Zhang, Peng Lin, Xiaoxin Xu, Xiaojuan Qi, Zhongrui Wang, Dashan Shang, Qi Liu, Ming Liu","doi":"10.1038/s43588-024-00751-z","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and Von Neumann bottleneck, hinder the efficiency of digital computers. In addition, SNNs are characterized by their software training complexities. Here, to this end, we propose a hardware-software co-design on a 40 nm 256 kB in-memory computing macro that physically integrates a fixed and random liquid state machine SNN encoder with trainable artificial neural network projections. We showcase the zero-shot learning of multimodal events on the N-MNIST and N-TIDIGITS datasets, including visual and audio data association, as well as neural and visual data alignment for brain-machine interfaces. Our co-design achieves classification accuracy comparable to fully optimized software models, resulting in a 152.83- and 393.07-fold reduction in training costs compared with state-of-the-art spiking recurrent neural network-based contrastive learning and prototypical networks, and a 23.34- and 160-fold improvement in energy efficiency compared with cutting-edge digital hardware, respectively. These proof-of-principle prototypes demonstrate zero-shot multimodal events learning capability for emerging efficient and compact neuromorphic hardware.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00751-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and Von Neumann bottleneck, hinder the efficiency of digital computers. In addition, SNNs are characterized by their software training complexities. Here, to this end, we propose a hardware-software co-design on a 40 nm 256 kB in-memory computing macro that physically integrates a fixed and random liquid state machine SNN encoder with trainable artificial neural network projections. We showcase the zero-shot learning of multimodal events on the N-MNIST and N-TIDIGITS datasets, including visual and audio data association, as well as neural and visual data alignment for brain-machine interfaces. Our co-design achieves classification accuracy comparable to fully optimized software models, resulting in a 152.83- and 393.07-fold reduction in training costs compared with state-of-the-art spiking recurrent neural network-based contrastive learning and prototypical networks, and a 23.34- and 160-fold improvement in energy efficiency compared with cutting-edge digital hardware, respectively. These proof-of-principle prototypes demonstrate zero-shot multimodal events learning capability for emerging efficient and compact neuromorphic hardware.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信