Sparse keypoint segmentation of lung fissures: efficient geometric deep learning for abstracting volumetric images.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Paul Kaftan, Mattias P Heinrich, Lasse Hansen, Volker Rasche, Hans A Kestler, Alexander Bigalke
{"title":"Sparse keypoint segmentation of lung fissures: efficient geometric deep learning for abstracting volumetric images.","authors":"Paul Kaftan, Mattias P Heinrich, Lasse Hansen, Volker Rasche, Hans A Kestler, Alexander Bigalke","doi":"10.1007/s11548-024-03310-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Lung fissure segmentation on CT images often relies on 3D convolutional neural networks (CNNs). However, 3D-CNNs are inefficient for detecting thin structures like the fissures, which make up a tiny fraction of the entire image volume. We propose to make lung fissure segmentation more efficient by using geometric deep learning (GDL) on sparse point clouds.</p><p><strong>Methods: </strong>We abstract image data with sparse keypoint (KP) clouds. We train GDL models to segment the point cloud, comparing three major paradigms of models (PointNets, graph convolutional networks (GCNs), and PointTransformers). From the sparse point segmentations, 3D meshes of the objects are reconstructed to obtain a dense surface. The state-of-the-art Poisson surface reconstruction (PSR) makes up most of the time in our pipeline. Therefore, we propose an efficient point cloud to mesh autoencoder (PC-AE) that deforms a template mesh to fit a point cloud in a single forward pass. Our pipeline is evaluated extensively and compared to the 3D-CNN gold standard nnU-Net on diverse clinical and pathological data.</p><p><strong>Results: </strong>GCNs yield the best trade-off between inference time and accuracy, being <math><mrow><mn>21</mn> <mo>×</mo></mrow> </math> faster with only <math><mrow><mn>1.4</mn> <mo>×</mo></mrow> </math> increased error over the nnU-Net. Our PC-AE also achieves a favorable trade-off, being <math><mrow><mn>3</mn> <mo>×</mo></mrow> </math> faster at <math><mrow><mn>1.5</mn> <mo>×</mo></mrow> </math> the error compared to the PSR.</p><p><strong>Conclusion: </strong>We present a KP-based fissure segmentation pipeline that is more efficient than 3D-CNNs and can greatly speed up large-scale analyses. A novel PC-AE for efficient mesh reconstruction from sparse point clouds is introduced, showing promise not only for fissure segmentation. Source code is available on https://github.com/kaftanski/fissure-segmentation-IJCARS.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03310-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Lung fissure segmentation on CT images often relies on 3D convolutional neural networks (CNNs). However, 3D-CNNs are inefficient for detecting thin structures like the fissures, which make up a tiny fraction of the entire image volume. We propose to make lung fissure segmentation more efficient by using geometric deep learning (GDL) on sparse point clouds.

Methods: We abstract image data with sparse keypoint (KP) clouds. We train GDL models to segment the point cloud, comparing three major paradigms of models (PointNets, graph convolutional networks (GCNs), and PointTransformers). From the sparse point segmentations, 3D meshes of the objects are reconstructed to obtain a dense surface. The state-of-the-art Poisson surface reconstruction (PSR) makes up most of the time in our pipeline. Therefore, we propose an efficient point cloud to mesh autoencoder (PC-AE) that deforms a template mesh to fit a point cloud in a single forward pass. Our pipeline is evaluated extensively and compared to the 3D-CNN gold standard nnU-Net on diverse clinical and pathological data.

Results: GCNs yield the best trade-off between inference time and accuracy, being 21 × faster with only 1.4 × increased error over the nnU-Net. Our PC-AE also achieves a favorable trade-off, being 3 × faster at 1.5 × the error compared to the PSR.

Conclusion: We present a KP-based fissure segmentation pipeline that is more efficient than 3D-CNNs and can greatly speed up large-scale analyses. A novel PC-AE for efficient mesh reconstruction from sparse point clouds is introduced, showing promise not only for fissure segmentation. Source code is available on https://github.com/kaftanski/fissure-segmentation-IJCARS.

肺裂隙稀疏关键点分割:高效几何深度学习提取体积图像。
目的:CT图像上肺裂隙分割通常依赖于三维卷积神经网络(cnn)。然而,3d - cnn在检测裂缝等薄结构时效率低下,这些结构只占整个图像体积的一小部分。本文提出了利用几何深度学习(GDL)对稀疏点云进行肺裂隙分割的方法。方法:采用稀疏关键点云(KP)对图像数据进行抽象。我们训练GDL模型来分割点云,比较了三种主要的模型范式(PointNets,图卷积网络(GCNs)和PointTransformers)。从稀疏的点分割中,重建物体的三维网格,得到一个密集的表面。最先进的泊松表面重建(PSR)占据了我们管道的大部分时间。因此,我们提出了一种有效的点云到网格自动编码器(PC-AE),它可以在单个前向通道中变形模板网格以适应点云。我们的管道被广泛评估,并在不同的临床和病理数据上与3D-CNN金标准nnU-Net进行比较。结果:GCNs在推理时间和准确性之间取得了最好的平衡,比nnU-Net快21倍,误差仅增加1.4倍。我们的PC-AE也实现了良好的权衡,与PSR相比,在1.5倍的误差下速度提高了3倍。结论:我们提出了一种基于kp的裂缝分割管道,该管道比3d - cnn更高效,可以大大加快大规模分析的速度。介绍了一种新的基于PC-AE的稀疏点云网格重构方法,该方法不仅在裂缝分割方面具有良好的应用前景。源代码可在https://github.com/kaftanski/fissure-segmentation-IJCARS上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信