{"title":"An accurately supervised motion-aware deep network for non-contact pain assessment of trigeminal neuralgia mouse model.","authors":"Zhiheng Feng, Mingcai Chen, Jue Zhang, Xin Peng","doi":"10.22514/jofph.2024.008","DOIUrl":null,"url":null,"abstract":"<p><p>Pain assessment in trigeminal neuralgia (TN) mouse models is essential for exploring its pathophysiology and developing effective analgesics. However, pain assessment methods for TN mouse models have not been widely studied, resulting in a critical gap in our understanding of TN. With the rapid advancement of deep learning, numerous pain assessment methods based on deep learning have emerged. Nonetheless, these methods have some limitations: (1) insufficiently objective supervision signals for training, (2) failure to account for the dynamic behavioral characteristics of mouse models in the constructed models and (3) inadequate generalization ability of the models. In this study, we initially constructed an objective pain grading dataset as the ground truth for model training, which remedy the limitations of prior studies that relied on subjective evaluation as supervisory signals. Then we proposed a novel deep neural network, named trigeminal neuralgia pain assessment network (TNPAN), which fuses the static texture characteristics and dynamic behavioral characteristics of mouse facial expressions. The promising experimental results demonstrate that TNPAN exhibits exceptional accuracy and generalization capability in pain assessment.</p>","PeriodicalId":48800,"journal":{"name":"Journal of Oral & Facial Pain and Headache","volume":"38 1","pages":"77-92"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral & Facial Pain and Headache","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22514/jofph.2024.008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Pain assessment in trigeminal neuralgia (TN) mouse models is essential for exploring its pathophysiology and developing effective analgesics. However, pain assessment methods for TN mouse models have not been widely studied, resulting in a critical gap in our understanding of TN. With the rapid advancement of deep learning, numerous pain assessment methods based on deep learning have emerged. Nonetheless, these methods have some limitations: (1) insufficiently objective supervision signals for training, (2) failure to account for the dynamic behavioral characteristics of mouse models in the constructed models and (3) inadequate generalization ability of the models. In this study, we initially constructed an objective pain grading dataset as the ground truth for model training, which remedy the limitations of prior studies that relied on subjective evaluation as supervisory signals. Then we proposed a novel deep neural network, named trigeminal neuralgia pain assessment network (TNPAN), which fuses the static texture characteristics and dynamic behavioral characteristics of mouse facial expressions. The promising experimental results demonstrate that TNPAN exhibits exceptional accuracy and generalization capability in pain assessment.
期刊介绍:
Founded upon sound scientific principles, this journal continues to make important contributions that strongly influence the work of dental and medical professionals involved in treating oral and facial pain, including temporomandibular disorders, and headache. In addition to providing timely scientific research and clinical articles, the journal presents diagnostic techniques and treatment therapies for oral and facial pain, headache, mandibular dysfunction, and occlusion and covers pharmacology, physical therapy, surgery, and other pain-management methods.