In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa
{"title":"In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system.","authors":"Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa","doi":"10.1007/s13246-024-01486-x","DOIUrl":null,"url":null,"abstract":"<p><p>Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01486-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信