Guangjian Zhang, Dayoung Lee, Yilin Li, Anthony Ong
{"title":"Dynamic factor analysis with multivariate time series of multiple individuals: An error-corrected estimation method.","authors":"Guangjian Zhang, Dayoung Lee, Yilin Li, Anthony Ong","doi":"10.1037/met0000722","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive longitudinal data, increasingly common in social and behavioral sciences, often consist of multivariate time series from multiple individuals. Dynamic factor analysis, combining factor analysis and time series analysis, has been used to uncover individual-specific processes from single-individual time series. However, integrating these processes across individuals is challenging due to estimation errors in individual-specific parameter estimates. We propose a method that integrates individual-specific processes while accommodating the corresponding estimation error. This method is computationally efficient and robust against model specification errors and nonnormal data. We compare our method with a Naive approach that ignores estimation error using both empirical and simulated data. The two methods produced similar estimates for fixed effect parameters, but the proposed method produced more satisfactory estimates for random effects than the Naive method. The relative advantage of the proposed method was more substantial for short to moderately long time series (<i>T</i> = 56-200). (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000722","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intensive longitudinal data, increasingly common in social and behavioral sciences, often consist of multivariate time series from multiple individuals. Dynamic factor analysis, combining factor analysis and time series analysis, has been used to uncover individual-specific processes from single-individual time series. However, integrating these processes across individuals is challenging due to estimation errors in individual-specific parameter estimates. We propose a method that integrates individual-specific processes while accommodating the corresponding estimation error. This method is computationally efficient and robust against model specification errors and nonnormal data. We compare our method with a Naive approach that ignores estimation error using both empirical and simulated data. The two methods produced similar estimates for fixed effect parameters, but the proposed method produced more satisfactory estimates for random effects than the Naive method. The relative advantage of the proposed method was more substantial for short to moderately long time series (T = 56-200). (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.