{"title":"Spur-winged lapwings show spatial behavioural types with different mobility and exploration between urban and rural individuals.","authors":"Michael Bar-Ziv, Hilla Ziv, Mookie Breuer, Eitam Arnon, Assaf Uzan, Orr Spiegel","doi":"10.1098/rspb.2024.2471","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e. behavioural types; BTs), which in turn shape various ecological processes. To address these questions, we investigated the movements of a common resident wader, the spur-winged lapwing (<i>Vanellus spinosus</i>), hypothesizing that urban individuals will be more mobile than rural ones. We used an ATLAS tracking system to track many (<i>n </i>= 135) individuals at a high resolution over several months each. We first established that daily movement indices show consistent differences among individuals, acting as spatial-BTs. Then focusing on the two main principle components of lapwings' daily movements-mobility and position along the exploration-exploitation gradient-we investigated how these BTs are shaped by urbanization, season (nesting versus non-nesting) and sex. We found that urban lapwings were indeed more mobile in both seasons. Furthermore, urban females were less explorative than rural females, especially during the nesting season. These results highlight how urbanization affects wildlife behaviour, even of apparently urban-resilient avian residents. This underscores the need to consider possible behavioural consequences that are only apparent through advanced tracking methods.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2038","pages":"20242471"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2471","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e. behavioural types; BTs), which in turn shape various ecological processes. To address these questions, we investigated the movements of a common resident wader, the spur-winged lapwing (Vanellus spinosus), hypothesizing that urban individuals will be more mobile than rural ones. We used an ATLAS tracking system to track many (n = 135) individuals at a high resolution over several months each. We first established that daily movement indices show consistent differences among individuals, acting as spatial-BTs. Then focusing on the two main principle components of lapwings' daily movements-mobility and position along the exploration-exploitation gradient-we investigated how these BTs are shaped by urbanization, season (nesting versus non-nesting) and sex. We found that urban lapwings were indeed more mobile in both seasons. Furthermore, urban females were less explorative than rural females, especially during the nesting season. These results highlight how urbanization affects wildlife behaviour, even of apparently urban-resilient avian residents. This underscores the need to consider possible behavioural consequences that are only apparent through advanced tracking methods.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.