{"title":"The Dynamics of Symbiodiniaceae and Photosynthetic Bacteria Under High-Temperature Conditions.","authors":"Yongqian Xu, Jiayuan Liang, Liangyun Qin, Tianyi Niu, Zhuqing Liang, Zhicong Li, Biao Chen, Jin Zhou, Kefu Yu","doi":"10.1007/s00248-024-02470-4","DOIUrl":null,"url":null,"abstract":"<p><p>Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions. Our results revealed that Symbiodiniaceae density and Chlorophyll a concentration were lowest during the summer and highest in the winter. Notably, the summer bacterial community was predominately composed of the proteorhodopsin bacterium BD 1-7 _clade, alongside a significant increase in Cyanobacteria, particularly Synechococcus_CC9902 and Cyanobium_PCC-6307, which represented 61.85% and 31.48% of the total Cyanobacterial community, respectively. In vitro experiments demonstrated that Cyanobacteria significantly enhanced Symbiodiniaceae photosynthetic efficiency under high-temperature conditions. These findings suggest that the increased abundance of photosynthetic bacteria during summer may mitigate the adverse physiological effects of reduced Symbiodiniaceae density, thereby contributing to coral stability. Our study highlights a potential synergistic interaction between Symbiodiniaceae and photosynthetic bacteria, emphasizing the importance of understanding these dynamic interactions in sustaining coral resilience against environmental stress, although further research is necessary to establish their role in preventing coral bleaching.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"169"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02470-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions. Our results revealed that Symbiodiniaceae density and Chlorophyll a concentration were lowest during the summer and highest in the winter. Notably, the summer bacterial community was predominately composed of the proteorhodopsin bacterium BD 1-7 _clade, alongside a significant increase in Cyanobacteria, particularly Synechococcus_CC9902 and Cyanobium_PCC-6307, which represented 61.85% and 31.48% of the total Cyanobacterial community, respectively. In vitro experiments demonstrated that Cyanobacteria significantly enhanced Symbiodiniaceae photosynthetic efficiency under high-temperature conditions. These findings suggest that the increased abundance of photosynthetic bacteria during summer may mitigate the adverse physiological effects of reduced Symbiodiniaceae density, thereby contributing to coral stability. Our study highlights a potential synergistic interaction between Symbiodiniaceae and photosynthetic bacteria, emphasizing the importance of understanding these dynamic interactions in sustaining coral resilience against environmental stress, although further research is necessary to establish their role in preventing coral bleaching.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.