Nina Bednaršek, Greg Pelletier, Katsunori Kimoto, Parker MacCready, Terrie Klinger, Jan Newton
{"title":"Sensitivity of pteropod calcification to multi stressor variability in coastal habitats.","authors":"Nina Bednaršek, Greg Pelletier, Katsunori Kimoto, Parker MacCready, Terrie Klinger, Jan Newton","doi":"10.1016/j.marenvres.2024.106868","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehensive understanding of environmental multiple stressors on calcification in marine calcifiers remains an important topic of study, especially under ocean global change associated with multiple stressors. We explore the impact of multiple stressor on pteropod calcification in the southern Salish Sea (Washington, U.S.), a coastal estuarine system that exhibits a high degree of spatial and temporal variability in multiple environmental parameters across sampling locations. We hypothesized that such variability is associated with differences in pteropod calcification. Shell thickness and shell density across pteropod life history stages was compared with high-resolution outputs from a realistic model of regional circulation and biogeochemistry to explore how the mean and variability of multiple stressors (aragonite saturation state (Ω<sub>ar</sub>), temperature, food availability) influence calcification. We found that both the mean and variability in multiple stressors play a major role in calcification in pteropods, with a generalized linear model explaining more than 60% of the variance. We suggest two different modes of shell building: stable conditions of lower mean Ω<sub>ar</sub> trigger the loss of shell thickness and density. In the more variable habitats, i.e., where the variability occurs over diel and seasonal scales, shell thickness increases at higher Ω<sub>ar</sub> variability and greater food availability, which might partially compensate for the loss of shell density. This plastic response appears to be consistent across life stages and could represent a response mechanism that allows some compensatory calcification under less favourable conditions. However, compensation is very limited, as evident by lower shell growth resulting in shell sizes comparable to early life stages. These results substantially improve the understanding of the variability in multiple stressors on the calcification process under multiple stressors and provide a foundation for the development of two new proxies for calcification monitoring, and with implications for marine carbon dioxide removal strategies.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106868"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106868","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensive understanding of environmental multiple stressors on calcification in marine calcifiers remains an important topic of study, especially under ocean global change associated with multiple stressors. We explore the impact of multiple stressor on pteropod calcification in the southern Salish Sea (Washington, U.S.), a coastal estuarine system that exhibits a high degree of spatial and temporal variability in multiple environmental parameters across sampling locations. We hypothesized that such variability is associated with differences in pteropod calcification. Shell thickness and shell density across pteropod life history stages was compared with high-resolution outputs from a realistic model of regional circulation and biogeochemistry to explore how the mean and variability of multiple stressors (aragonite saturation state (Ωar), temperature, food availability) influence calcification. We found that both the mean and variability in multiple stressors play a major role in calcification in pteropods, with a generalized linear model explaining more than 60% of the variance. We suggest two different modes of shell building: stable conditions of lower mean Ωar trigger the loss of shell thickness and density. In the more variable habitats, i.e., where the variability occurs over diel and seasonal scales, shell thickness increases at higher Ωar variability and greater food availability, which might partially compensate for the loss of shell density. This plastic response appears to be consistent across life stages and could represent a response mechanism that allows some compensatory calcification under less favourable conditions. However, compensation is very limited, as evident by lower shell growth resulting in shell sizes comparable to early life stages. These results substantially improve the understanding of the variability in multiple stressors on the calcification process under multiple stressors and provide a foundation for the development of two new proxies for calcification monitoring, and with implications for marine carbon dioxide removal strategies.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.