Daniel A Weisz, Sarah M Rogstad, Kui Zeng, Eric Pang, Ilan Geerlof-Vidavsky
{"title":"Validation of a liquid chromatography-high-resolution mass spectrometry method to quantify peptide-related impurities in teriparatide.","authors":"Daniel A Weisz, Sarah M Rogstad, Kui Zeng, Eric Pang, Ilan Geerlof-Vidavsky","doi":"10.1016/j.jpba.2024.116654","DOIUrl":null,"url":null,"abstract":"<p><p>With recent advances in quantitative high-resolution mass spectrometry (HRMS), there is growing interest in developing liquid chromatography (LC)-HRMS methods that can simultaneously quantify numerous critical impurities in a peptide or protein drug. This approach is attractive as it could reduce the total number of methods and instruments required during product development and quality control testing, while taking advantage of the technique's high specificity and sensitivity. To investigate the feasibility of this approach for peptide drugs, an LC-HRMS method was validated for the quantification of six peptide-related impurities in teriparatide, the 34-amino acid active ingredient in Forteo. External calibration curves were constructed to correlate the peak area ratio of impurity-to-teriparatide to a known impurity abundance. The method displayed good specificity, sensitivity, linearity, accuracy, repeatability, intermediate precision, and robustness. The lower limits of quantification were 0.02 % or 0.03 % of teriparatide, below the regulatory reporting threshold of 0.10 %. It was found that quantification using three isotopic peaks per peptide did not provide a significant benefit over quantification with one isotopic peak. The method was validated successfully without the impractical inclusion of an isotopically-labeled internal standard for each impurity. Future studies will be conducted to determine the method's longer-term reproducibility.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116654"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116654","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With recent advances in quantitative high-resolution mass spectrometry (HRMS), there is growing interest in developing liquid chromatography (LC)-HRMS methods that can simultaneously quantify numerous critical impurities in a peptide or protein drug. This approach is attractive as it could reduce the total number of methods and instruments required during product development and quality control testing, while taking advantage of the technique's high specificity and sensitivity. To investigate the feasibility of this approach for peptide drugs, an LC-HRMS method was validated for the quantification of six peptide-related impurities in teriparatide, the 34-amino acid active ingredient in Forteo. External calibration curves were constructed to correlate the peak area ratio of impurity-to-teriparatide to a known impurity abundance. The method displayed good specificity, sensitivity, linearity, accuracy, repeatability, intermediate precision, and robustness. The lower limits of quantification were 0.02 % or 0.03 % of teriparatide, below the regulatory reporting threshold of 0.10 %. It was found that quantification using three isotopic peaks per peptide did not provide a significant benefit over quantification with one isotopic peak. The method was validated successfully without the impractical inclusion of an isotopically-labeled internal standard for each impurity. Future studies will be conducted to determine the method's longer-term reproducibility.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.