Alessio Bottrighi, Federica Grosso, Marco Ghiglione, Antonio Maconi, Stefano Nera, Luca Piovesan, Erica Raina, Annalisa Roveta, Paolo Terenziani
{"title":"A Symbolic AI Approach to Medical Training.","authors":"Alessio Bottrighi, Federica Grosso, Marco Ghiglione, Antonio Maconi, Stefano Nera, Luca Piovesan, Erica Raina, Annalisa Roveta, Paolo Terenziani","doi":"10.1007/s10916-024-02139-y","DOIUrl":null,"url":null,"abstract":"<p><p>In traditional medical education, learners are mostly trained to diagnose and treat patients through supervised practice. Artificial Intelligence and simulation techniques can complement such an educational practice. In this paper, we present GLARE-Edu, an innovative system in which AI knowledge-based methodologies and simulation are exploited to train learners \"how to act\" on patients based on the evidence-based best practices provided by clinical practice guidelines. GLARE-Edu is being developed by a multi-disciplinary team involving physicians and AI experts, within the AI-LEAP (LEArning Personalization of AI and with AI) Italian project. GLARE-Edu is domain-independent: it supports the acquisition of clinical guidelines and case studies in a computer format. Based on acquired guidelines (and case studies), it provides a series of educational facilities: (i) navigation, to navigate the structured representation of the guidelines provided by GLARE-Edu, (ii) automated simulation, to show learners how a guideline would suggest to act, step-by-step, on a specific case, and (iii) (self)verification, asking learners how they would treat a case, and comparing step-by-step the learner's proposal with the suggestions of the proper guideline. In this paper, we describe GLARE-Edu architecture and general features, and we demonstrate our approach through a concrete application to the melanoma guideline and we propose a preliminary evaluation.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"2"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02139-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional medical education, learners are mostly trained to diagnose and treat patients through supervised practice. Artificial Intelligence and simulation techniques can complement such an educational practice. In this paper, we present GLARE-Edu, an innovative system in which AI knowledge-based methodologies and simulation are exploited to train learners "how to act" on patients based on the evidence-based best practices provided by clinical practice guidelines. GLARE-Edu is being developed by a multi-disciplinary team involving physicians and AI experts, within the AI-LEAP (LEArning Personalization of AI and with AI) Italian project. GLARE-Edu is domain-independent: it supports the acquisition of clinical guidelines and case studies in a computer format. Based on acquired guidelines (and case studies), it provides a series of educational facilities: (i) navigation, to navigate the structured representation of the guidelines provided by GLARE-Edu, (ii) automated simulation, to show learners how a guideline would suggest to act, step-by-step, on a specific case, and (iii) (self)verification, asking learners how they would treat a case, and comparing step-by-step the learner's proposal with the suggestions of the proper guideline. In this paper, we describe GLARE-Edu architecture and general features, and we demonstrate our approach through a concrete application to the melanoma guideline and we propose a preliminary evaluation.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.