Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-03-01 Epub Date: 2025-01-10 DOI:10.3892/ijmm.2025.5483
Tao Wang, Mengzhou Wang, Wuming Liu, Lin Zhang, Jia Zhang, Junzhou Zhao, Zheng Wu, Yi Lyu, Rongqian Wu
{"title":"Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.","authors":"Tao Wang, Mengzhou Wang, Wuming Liu, Lin Zhang, Jia Zhang, Junzhou Zhao, Zheng Wu, Yi Lyu, Rongqian Wu","doi":"10.3892/ijmm.2025.5483","DOIUrl":null,"url":null,"abstract":"<p><p>Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism. The overall involvement of CIRP in liver regeneration and injury after hepatectomy was evaluated in CIRP‑deficient mice. C23, an antagonist of extracellular CIRP, was used to assess the effect of extracellular CIRP on liver regeneration and injury after hepatectomy. CIRP overexpression and short hairpin RNA plasmids were transfected into HepG2 cells to study the effect of intracellular CIRP on cell proliferation. The effects of extracellular CIRP on cell proliferation and injury were determined via the use of recombinant CIRP protein to stimulate HepG2 cells <i>in vitro</i>. The results indicated that both hepatic and serum CIRP levels significantly increased after partial hepatectomy. Additionally, CIRP deficiency impaired liver regeneration but alleviated liver injury after partial hepatectomy in mice. C23 administration attenuated liver injury and suppressed endoplasmic reticulum (ER) stress and oxidative stress. Loss‑ and gain‑of‑function analyses in HepG2 cells indicated that an increase in intracellular CIRP promoted cell proliferation via signal transducers and activation of transcription 3 (STAT3) signaling pathway activation. Moreover, recombinant CIRP had no effect on cell proliferation or STAT3 phosphorylation but induced ER stress, which was blocked by TAK242, an inhibitor of Toll‑like receptor 4 (TLR4), in HepG2 cells. Taken together, the results of the present study demonstrated that intracellular CIRP promotes liver regeneration by activating the STAT3 pathway, whereas extracellular CIRP induces ER stress possibly via the TLR4 signaling pathway after hepatectomy.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism. The overall involvement of CIRP in liver regeneration and injury after hepatectomy was evaluated in CIRP‑deficient mice. C23, an antagonist of extracellular CIRP, was used to assess the effect of extracellular CIRP on liver regeneration and injury after hepatectomy. CIRP overexpression and short hairpin RNA plasmids were transfected into HepG2 cells to study the effect of intracellular CIRP on cell proliferation. The effects of extracellular CIRP on cell proliferation and injury were determined via the use of recombinant CIRP protein to stimulate HepG2 cells in vitro. The results indicated that both hepatic and serum CIRP levels significantly increased after partial hepatectomy. Additionally, CIRP deficiency impaired liver regeneration but alleviated liver injury after partial hepatectomy in mice. C23 administration attenuated liver injury and suppressed endoplasmic reticulum (ER) stress and oxidative stress. Loss‑ and gain‑of‑function analyses in HepG2 cells indicated that an increase in intracellular CIRP promoted cell proliferation via signal transducers and activation of transcription 3 (STAT3) signaling pathway activation. Moreover, recombinant CIRP had no effect on cell proliferation or STAT3 phosphorylation but induced ER stress, which was blocked by TAK242, an inhibitor of Toll‑like receptor 4 (TLR4), in HepG2 cells. Taken together, the results of the present study demonstrated that intracellular CIRP promotes liver regeneration by activating the STAT3 pathway, whereas extracellular CIRP induces ER stress possibly via the TLR4 signaling pathway after hepatectomy.

细胞内CIRP通过激活STAT3信号通路促进小鼠部分肝切除术后肝脏再生。
冷诱导RNA结合蛋白(CIRP)是一种冷休克蛋白,根据其细胞定位参与多种生物过程的调节。然而,据我们所知,CIRP在肝切除术后肝再生和损伤中的作用尚未被研究。因此,本研究旨在探讨CIRP是否参与肝切除术后肝再生及其具体作用和潜在的分子机制。在CIRP缺陷小鼠中评估了CIRP在肝切除术后肝再生和损伤中的总体参与。C23是细胞外CIRP的拮抗剂,用于评估细胞外CIRP对肝切除术后肝脏再生和损伤的影响。将CIRP过表达和短发夹RNA质粒转染HepG2细胞,研究细胞内CIRP对细胞增殖的影响。利用重组CIRP蛋白体外刺激HepG2细胞,研究细胞外CIRP对细胞增殖和损伤的影响。结果显示,肝部分切除术后肝脏和血清CIRP水平均显著升高。此外,CIRP缺乏损害了肝脏再生,但减轻了小鼠部分肝切除术后的肝损伤。C23可减轻肝损伤,抑制内质网应激和氧化应激。HepG2细胞的功能丧失和功能获得分析表明,细胞内CIRP的增加通过信号转导和转录3 (STAT3)信号通路的激活促进了细胞增殖。此外,重组CIRP对细胞增殖或STAT3磷酸化没有影响,但在HepG2细胞中诱导内质网应激,内质网应激被Toll样受体4 (TLR4)抑制剂TAK242阻断。综上所述,本研究结果表明,细胞内CIRP通过激活STAT3通路促进肝脏再生,而细胞外CIRP可能在肝切除术后通过TLR4信号通路诱导内质网应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信