Knowledge graph-based thought: a knowledge graph-enhanced LLM framework for pan-cancer question answering.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Yichun Feng, Lu Zhou, Chao Ma, Yikai Zheng, Ruikun He, Yixue Li
{"title":"Knowledge graph-based thought: a knowledge graph-enhanced LLM framework for pan-cancer question answering.","authors":"Yichun Feng, Lu Zhou, Chao Ma, Yikai Zheng, Ruikun He, Yixue Li","doi":"10.1093/gigascience/giae082","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, large language models (LLMs) have shown promise in various domains, notably in biomedical sciences. However, their real-world application is often limited by issues like erroneous outputs and hallucinatory responses.</p><p><strong>Results: </strong>We developed the knowledge graph-based thought (KGT) framework, an innovative solution that integrates LLMs with knowledge graphs (KGs) to improve their initial responses by utilizing verifiable information from KGs, thus significantly reducing factual errors in reasoning. The KGT framework demonstrates strong adaptability and performs well across various open-source LLMs. Notably, KGT can facilitate the discovery of new uses for existing drugs through potential drug-cancer associations and can assist in predicting resistance by analyzing relevant biomarkers and genetic mechanisms. To evaluate the knowledge graph question answering task within biomedicine, we utilize a pan-cancer knowledge graph to develop a pan-cancer question answering benchmark, named pan-cancer question answering.</p><p><strong>Conclusions: </strong>The KGT framework substantially improves the accuracy and utility of LLMs in the biomedical field. This study serves as a proof of concept, demonstrating its exceptional performance in biomedical question answering.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In recent years, large language models (LLMs) have shown promise in various domains, notably in biomedical sciences. However, their real-world application is often limited by issues like erroneous outputs and hallucinatory responses.

Results: We developed the knowledge graph-based thought (KGT) framework, an innovative solution that integrates LLMs with knowledge graphs (KGs) to improve their initial responses by utilizing verifiable information from KGs, thus significantly reducing factual errors in reasoning. The KGT framework demonstrates strong adaptability and performs well across various open-source LLMs. Notably, KGT can facilitate the discovery of new uses for existing drugs through potential drug-cancer associations and can assist in predicting resistance by analyzing relevant biomarkers and genetic mechanisms. To evaluate the knowledge graph question answering task within biomedicine, we utilize a pan-cancer knowledge graph to develop a pan-cancer question answering benchmark, named pan-cancer question answering.

Conclusions: The KGT framework substantially improves the accuracy and utility of LLMs in the biomedical field. This study serves as a proof of concept, demonstrating its exceptional performance in biomedical question answering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信