Unveiling the impact of biodegradable polylactic acid microplastics on meadow soil health.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Shuming Liu, Binglin Chen, Kaili Wang, Jinghuizi Wang, Kaili Wang, Yan Suo, Xiaoyu Yang, Yaokun Zhu, Jiaxing Zhang, Mengchu Lu, Yunqing Liu
{"title":"Unveiling the impact of biodegradable polylactic acid microplastics on meadow soil health.","authors":"Shuming Liu, Binglin Chen, Kaili Wang, Jinghuizi Wang, Kaili Wang, Yan Suo, Xiaoyu Yang, Yaokun Zhu, Jiaxing Zhang, Mengchu Lu, Yunqing Liu","doi":"10.1007/s10653-025-02358-3","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored. This study investigates the impacts of PLA-MPs of varying particle sizes and concentrations on soil physicochemical properties, enzyme activities, and microbial communities through a 60-day incubation experiment. PLA-MPs increased the pH, soil organic matter, total nitrogen (TN) and available potassium (AK) content, as well as enhanced the activities of superoxide dismutase (S-SOD), peroxidase (S-POD), soil catalase (S-CAT), β-glucosidase (S-β-GC) and urease (S-UE) activities. Conversely, a decrease in alkaline phosphatase (S-ALP) activity was observed. The influence of PLA-MPs on soil physicochemical properties was more pronounced with larger particle sizes, whereas smaller particles had a greater effect on enzyme activities. Additionally, PLA-MPs led to an increase in the abundance of Acidobacteriota, Chloroflexi, and Gemmatimonadota, while the abundance of Proteobacteria, Actinobacteriota, and Patescibacteria declined. Mantel test analysis showed that changes in microbial community composition affected soil properties such as pH, AK, S-UE and S-β-GC. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis demonstrated that PLA-MPs modify bacterial metabolic pathways. Our results suggest that particle size and concentration of PLA-MPs differentially affect soil nutrients and microbial community structure and function, with more significant effects observed at larger particle sizes and higher concentrations.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"45"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02358-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microplastics (MPs) pollution has garnered considerable attention in recent years. The use of biodegradable plastics for mulching has led to significant quantities of plastic entering agro-ecosystems. However, the effects of biodegradable polylactic acid (PLA) plastics on meadow soils remain underexplored. This study investigates the impacts of PLA-MPs of varying particle sizes and concentrations on soil physicochemical properties, enzyme activities, and microbial communities through a 60-day incubation experiment. PLA-MPs increased the pH, soil organic matter, total nitrogen (TN) and available potassium (AK) content, as well as enhanced the activities of superoxide dismutase (S-SOD), peroxidase (S-POD), soil catalase (S-CAT), β-glucosidase (S-β-GC) and urease (S-UE) activities. Conversely, a decrease in alkaline phosphatase (S-ALP) activity was observed. The influence of PLA-MPs on soil physicochemical properties was more pronounced with larger particle sizes, whereas smaller particles had a greater effect on enzyme activities. Additionally, PLA-MPs led to an increase in the abundance of Acidobacteriota, Chloroflexi, and Gemmatimonadota, while the abundance of Proteobacteria, Actinobacteriota, and Patescibacteria declined. Mantel test analysis showed that changes in microbial community composition affected soil properties such as pH, AK, S-UE and S-β-GC. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis demonstrated that PLA-MPs modify bacterial metabolic pathways. Our results suggest that particle size and concentration of PLA-MPs differentially affect soil nutrients and microbial community structure and function, with more significant effects observed at larger particle sizes and higher concentrations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信