Zoé Durin, Aurore Layotte, Willy Morelle, Marine Houdou, Antoine Folcher, Dominique Legrand, Dirk Lefeber, Natalia Prevarskaya, Julia Von Blume, Valérie Cormier-Daire, François Foulquier
{"title":"SLC10A7 regulates O-GalNAc glycosylation and Ca<sup>2+</sup> homeostasis in the secretory pathway: insights into SLC10A7-CDG.","authors":"Zoé Durin, Aurore Layotte, Willy Morelle, Marine Houdou, Antoine Folcher, Dominique Legrand, Dirk Lefeber, Natalia Prevarskaya, Julia Von Blume, Valérie Cormier-Daire, François Foulquier","doi":"10.1007/s00018-024-05551-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented. The emergence of CDG resulting from defects in ER/ Golgi homeostasis makes this even more difficult. SLC10A7 belongs to the SLC10 protein family, known as bile acid and steroid transport family, exhibiting a unique structure. It shows a ubiquitous expression and is linked to negative calcium regulation in cells. The mechanisms by which SLC10A7 deficiency leads to Golgi glycosylation abnormalities are unknown. The present study identifies major O-glycosylation defects in both SLC10A7 KO HAP1 cells and SLC10A7-CDG patient fibroblasts and reveals an increased ER and Golgi calcium contents. We also show that the abundance of COSMC and C1GALT1 is altered in SLC10A7-CDG patient cells, as well as the subcellular Golgi localization of the Ca<sup>2+</sup>-binding Cab45 protein. Finally, we demonstrate that supraphysiological manganese supplementation suppresses the deficient electrophoretic mobility of TGN46 by an aberrant transfer of GalNAc residues, and reveal COSMC Mn<sup>2+</sup> sensitivity. These findings provide novel insights into the mechanisms of Golgi glycosylation defects in SLC10A7-deficient cells. They show that SLC10A7 is a key Golgi transmembrane protein maintaining the tight regulation of Ca<sup>2+</sup> homeostasis in the ER and Golgi compartments, both essential for glycosylation.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"40"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05551-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented. The emergence of CDG resulting from defects in ER/ Golgi homeostasis makes this even more difficult. SLC10A7 belongs to the SLC10 protein family, known as bile acid and steroid transport family, exhibiting a unique structure. It shows a ubiquitous expression and is linked to negative calcium regulation in cells. The mechanisms by which SLC10A7 deficiency leads to Golgi glycosylation abnormalities are unknown. The present study identifies major O-glycosylation defects in both SLC10A7 KO HAP1 cells and SLC10A7-CDG patient fibroblasts and reveals an increased ER and Golgi calcium contents. We also show that the abundance of COSMC and C1GALT1 is altered in SLC10A7-CDG patient cells, as well as the subcellular Golgi localization of the Ca2+-binding Cab45 protein. Finally, we demonstrate that supraphysiological manganese supplementation suppresses the deficient electrophoretic mobility of TGN46 by an aberrant transfer of GalNAc residues, and reveal COSMC Mn2+ sensitivity. These findings provide novel insights into the mechanisms of Golgi glycosylation defects in SLC10A7-deficient cells. They show that SLC10A7 is a key Golgi transmembrane protein maintaining the tight regulation of Ca2+ homeostasis in the ER and Golgi compartments, both essential for glycosylation.
聚糖被认为是许多细胞和生理功能的基础。先天性糖基化障碍(CDG)目前包括160多种亚型,其特征是多糖合成和/或加工缺陷。尽管CDG患者的数量不断增加,但由于我们对多糖合成的了解是碎片化的,治疗选择仍然非常有限。由内质网/高尔基体稳态缺陷引起的CDG的出现使这更加困难。SLC10A7属于SLC10蛋白家族,被称为胆汁酸和类固醇转运家族,具有独特的结构。它显示出普遍的表达,并与细胞中的负钙调节有关。SLC10A7缺陷导致高尔基糖基化异常的机制尚不清楚。本研究发现SLC10A7 KO HAP1细胞和SLC10A7- cdg患者成纤维细胞中存在主要的o糖基化缺陷,并显示内质网和高尔基钙含量增加。我们还发现,在SLC10A7-CDG患者细胞中,COSMC和C1GALT1的丰度以及Ca2+结合Cab45蛋白的亚细胞高尔基定位发生了变化。最后,我们证明了超生理锰补充通过GalNAc残基的异常转移抑制了TGN46的电泳迁移率缺陷,并揭示了COSMC Mn2+的敏感性。这些发现为slc10a7缺陷细胞中高尔基糖基化缺陷的机制提供了新的见解。他们发现SLC10A7是一种关键的高尔基跨膜蛋白,在内质网和高尔基区室中维持Ca2+稳态的严格调节,两者都是糖基化所必需的。
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered