{"title":"Synchronization of two coupled massive oscillators in the time-delayed Kuramoto model.","authors":"Esmaeil Mahdavi, Mina Zarei, Farhad Shahbazi","doi":"10.1063/5.0228203","DOIUrl":null,"url":null,"abstract":"<p><p>We examine the impact of the time delay on two coupled massive oscillators within the second-order Kuramoto model, which is relevant to the operations of real-world networks that rely on signal transmission speed constraints. Our analytical and numerical exploration shows that time delay can cause multi-stability within phase-locked solutions, and the stability of these solutions decreases as the inertia increases. In addition to phase-locked solutions, we discovered non-phase-locked solutions that exhibit periodic and chaotic behaviors, depending on the amount of inertia and time delay.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0228203","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the impact of the time delay on two coupled massive oscillators within the second-order Kuramoto model, which is relevant to the operations of real-world networks that rely on signal transmission speed constraints. Our analytical and numerical exploration shows that time delay can cause multi-stability within phase-locked solutions, and the stability of these solutions decreases as the inertia increases. In addition to phase-locked solutions, we discovered non-phase-locked solutions that exhibit periodic and chaotic behaviors, depending on the amount of inertia and time delay.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.