Survival properties and spread rates in non-autonomous spread models.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0219391
Jung-Chao Ban, Jyy-I Hong, Cheng-Yu Tsai, Chu-Yang Tsou
{"title":"Survival properties and spread rates in non-autonomous spread models.","authors":"Jung-Chao Ban, Jyy-I Hong, Cheng-Yu Tsai, Chu-Yang Tsou","doi":"10.1063/5.0219391","DOIUrl":null,"url":null,"abstract":"<p><p>As time progresses, the transmission pattern of a disease may change. To more precisely determine the spread behaviors of the disease, we develop non-autonomous topological and random spread models. In this article, we validate the survival characteristics of these spread models and elucidate their connection with mixing properties using the associated ξ-matrices or spread mean matrices. We also introduce the concept of spread rates for both periodic topological and random spread models and provide rigorous formulas for calculating these rates. Additionally, numerical examples and simulation results are provided as supporting evidence for the theory in both topological and random models.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0219391","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

As time progresses, the transmission pattern of a disease may change. To more precisely determine the spread behaviors of the disease, we develop non-autonomous topological and random spread models. In this article, we validate the survival characteristics of these spread models and elucidate their connection with mixing properties using the associated ξ-matrices or spread mean matrices. We also introduce the concept of spread rates for both periodic topological and random spread models and provide rigorous formulas for calculating these rates. Additionally, numerical examples and simulation results are provided as supporting evidence for the theory in both topological and random models.

非自主扩散模型中的生存特性和扩散率。
随着时间的推移,疾病的传播模式可能会发生变化。为了更精确地确定疾病的传播行为,我们开发了非自治拓扑和随机传播模型。在本文中,我们验证了这些扩散模型的生存特性,并使用相关的ξ-矩阵或扩散平均矩阵阐明了它们与混合特性的联系。我们还引入了周期拓扑和随机扩展模型的扩展率的概念,并提供了计算这些速率的严格公式。此外,在拓扑模型和随机模型两种情况下,给出了数值算例和仿真结果作为理论的支持证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信