Integrated proteogenomic characterization of ampullary adenocarcinoma.

IF 13 1区 生物学 Q1 CELL BIOLOGY
Qiao Zhang, Xiaomeng Xu, Dongxian Jiang, Yunzhi Wang, Haixing Wang, Jiajun Zhu, Shaoshuai Tang, Ronghua Wang, Shuang Zhao, Kai Li, Jinwen Feng, Hang Xiang, Zhenmei Yao, Ning Xu, Rundong Fang, Wenjia Guo, Yu Liu, Yingyong Hou, Chen Ding
{"title":"Integrated proteogenomic characterization of ampullary adenocarcinoma.","authors":"Qiao Zhang, Xiaomeng Xu, Dongxian Jiang, Yunzhi Wang, Haixing Wang, Jiajun Zhu, Shaoshuai Tang, Ronghua Wang, Shuang Zhao, Kai Li, Jinwen Feng, Hang Xiang, Zhenmei Yao, Ning Xu, Rundong Fang, Wenjia Guo, Yu Liu, Yingyong Hou, Chen Ding","doi":"10.1038/s41421-024-00742-4","DOIUrl":null,"url":null,"abstract":"<p><p>Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC), among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion. Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3 (DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4<sup>+</sup> T-cell infiltration cluster), are associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"2"},"PeriodicalIF":13.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00742-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC), among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion. Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3 (DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4+ T-cell infiltration cluster), are associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.

壶腹腺癌的综合蛋白质基因组学特征。
壶腹腺癌(AMPAC)是一种罕见的异质性恶性肿瘤。在这里,我们对来自中国AMPAC患者和十二指肠患者的198个样本进行了全面的蛋白质基因组学分析。基因组数据表明,4q缺失导致脂肪酸积累和细胞增殖。蛋白质组学分析揭示了三种不同的簇(C-FAM, C-AD, C-CC),其中最具侵袭性的簇C-AD与预后最差相关,其特征为局灶粘连。免疫聚类鉴定出三个免疫簇,发现免疫簇M1(巨噬细胞浸润簇)和M3 (DC细胞浸润簇)的免疫评分高于簇M2 (CD4+ t细胞浸润簇),由于肿瘤细胞可能分泌IL-6及其影响,导致预后不良。本研究提供了全面的蛋白质基因组学分析,以寻求更好的理解和潜在的治疗AMPAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信