ET-PROTACs: modeling ternary complex interactions using cross-modal learning and ternary attention for accurate PROTAC-induced degradation prediction.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Lijun Cai, Guanyu Yue, Yifan Chen, Li Wang, Xiaojun Yao, Quan Zou, Xiangzheng Fu, Dongsheng Cao
{"title":"ET-PROTACs: modeling ternary complex interactions using cross-modal learning and ternary attention for accurate PROTAC-induced degradation prediction.","authors":"Lijun Cai, Guanyu Yue, Yifan Chen, Li Wang, Xiaojun Yao, Quan Zou, Xiangzheng Fu, Dongsheng Cao","doi":"10.1093/bib/bbae654","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex. This reliance underutilizes rich PROTAC experimental data and neglects intricate interaction relationships within ternary complexes.</p><p><strong>Results: </strong>In this study, we propose a model based on cross-modal strategy and ternary attention technology, ET-PROTACs, to predict the targeted degradation capabilities of PROTACs. Our model capitalizes on the strengths of cross-modal methods by using equivariant GNN graph neural networks to process the graph structure and spatial coordinates of PROTAC molecules concurrently while utilizing sequence-based methods to learn the protein sequence information. This integration of cross-modal information is cohesively harnessed and channeled into a ternary attention mechanism, specially tailored for the unique structure of PROTACs, enabling the congruent modeling of both PROTAC and protein modalities. Experimental results demonstrate that the ET-PROTACs model outperforms existing SOTA methods. Moreover, visualizing attention scores illuminates crucial residues and atoms pivotal in specific POI-PROTAC-E3 interactions, thus offering invaluable insights and guidance for future pharmaceutical research.</p><p><strong>Availability and implementation: </strong>The codes of our model are available at https://github.com/GuanyuYue/ET-PROTACs.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae654","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex. This reliance underutilizes rich PROTAC experimental data and neglects intricate interaction relationships within ternary complexes.

Results: In this study, we propose a model based on cross-modal strategy and ternary attention technology, ET-PROTACs, to predict the targeted degradation capabilities of PROTACs. Our model capitalizes on the strengths of cross-modal methods by using equivariant GNN graph neural networks to process the graph structure and spatial coordinates of PROTAC molecules concurrently while utilizing sequence-based methods to learn the protein sequence information. This integration of cross-modal information is cohesively harnessed and channeled into a ternary attention mechanism, specially tailored for the unique structure of PROTACs, enabling the congruent modeling of both PROTAC and protein modalities. Experimental results demonstrate that the ET-PROTACs model outperforms existing SOTA methods. Moreover, visualizing attention scores illuminates crucial residues and atoms pivotal in specific POI-PROTAC-E3 interactions, thus offering invaluable insights and guidance for future pharmaceutical research.

Availability and implementation: The codes of our model are available at https://github.com/GuanyuYue/ET-PROTACs.

ET-PROTACs:使用跨模态学习和三元注意建模三元复杂相互作用,以准确预测protac诱导的退化。
动机:准确预测蛋白水解靶向嵌合体(PROTACs)对给定靶蛋白和E3连接酶的降解能力对PROTAC设计非常重要。PROTACs独特的三元结构对传统的药物-靶点相互作用预测方法提出了挑战,需要更多的创新方法。虽然目前使用图神经网络(gnn)的最先进(SOTA)方法可以识别PROTACs和蛋白质的分子结构,从而能够有效预测PROTACs的降解能力,但它们严重依赖于POI-PROTAC-E3三元配合物的有限晶体结构数据。这种依赖充分利用了丰富的PROTAC实验数据,忽略了三元配合物中复杂的相互作用关系。结果:在本研究中,我们提出了一个基于跨模态策略和三元注意技术的模型ET-PROTACs来预测PROTACs的目标降解能力。我们的模型利用跨模态方法的优势,利用等变GNN图神经网络同时处理PROTAC分子的图结构和空间坐标,同时利用基于序列的方法学习蛋白质序列信息。这种跨模态信息的整合被紧密地利用并引导到三元注意机制中,该机制专门为PROTAC的独特结构量身定制,使PROTAC和蛋白质模态的一致建模成为可能。实验结果表明,ET-PROTACs模型优于现有的SOTA方法。此外,可视化注意力分数阐明了特定POI-PROTAC-E3相互作用的关键残基和原子,从而为未来的药物研究提供了宝贵的见解和指导。可用性和实现:我们模型的代码可在https://github.com/GuanyuYue/ET-PROTACs上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信