{"title":"A metric and its derived protein network for evaluation of ortholog database inconsistency.","authors":"Weijie Yang, Jingsi Ji, Gang Fang","doi":"10.1186/s12859-024-06023-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ortholog prediction, essential for various genomic research areas, faces growing inconsistencies amidst the expanding array of ortholog databases. The common strategy of computing consensus orthologs introduces additional arbitrariness, emphasizing the need to examine the causes of such inconsistencies and identify proteins susceptible to prediction errors.</p><p><strong>Results: </strong>We introduce the Signal Jaccard Index (SJI), a novel metric rooted in unsupervised genome context clustering, designed to assess protein similarity. Leveraging SJI, we construct a protein network and reveal that peripheral proteins within the network are the primary contributors to inconsistencies in orthology predictions. Furthermore, we show that a protein's degree centrality in the network serves as a strong predictor of its reliability in consensus sets.</p><p><strong>Conclusions: </strong>We present an objective, unsupervised SJI-based network encompassing all proteins, in which its topological features elucidate ortholog prediction inconsistencies. The degree centrality (DC) effectively identifies error-prone orthology assignments without relying on arbitrary parameters. Notably, DC is stable, unaffected by species selection, and well-suited for ortholog benchmarking. This approach transcends the limitations of universal thresholds, offering a robust and quantitative framework to explore protein evolution and functional relationships.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"6"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06023-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ortholog prediction, essential for various genomic research areas, faces growing inconsistencies amidst the expanding array of ortholog databases. The common strategy of computing consensus orthologs introduces additional arbitrariness, emphasizing the need to examine the causes of such inconsistencies and identify proteins susceptible to prediction errors.
Results: We introduce the Signal Jaccard Index (SJI), a novel metric rooted in unsupervised genome context clustering, designed to assess protein similarity. Leveraging SJI, we construct a protein network and reveal that peripheral proteins within the network are the primary contributors to inconsistencies in orthology predictions. Furthermore, we show that a protein's degree centrality in the network serves as a strong predictor of its reliability in consensus sets.
Conclusions: We present an objective, unsupervised SJI-based network encompassing all proteins, in which its topological features elucidate ortholog prediction inconsistencies. The degree centrality (DC) effectively identifies error-prone orthology assignments without relying on arbitrary parameters. Notably, DC is stable, unaffected by species selection, and well-suited for ortholog benchmarking. This approach transcends the limitations of universal thresholds, offering a robust and quantitative framework to explore protein evolution and functional relationships.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.