{"title":"A dual thermo/pH-sensitive hydrogel as 5-Fluorouracil carrier for breast cancer treatment.","authors":"Kairan Luo, Wenbin Hu","doi":"10.1097/CAD.0000000000001657","DOIUrl":null,"url":null,"abstract":"<p><p>Intelligent hydrogels are promising in constructing scaffolds for the controlled delivery of drugs. Here, a dual thermo- and pH-responsive hydrogel called PCG [poly ( N -isopropyl acrylamide-co-itaconic acid)/chitosan/glycerophosphate (PNI/CS/GP)] was established as the carrier of 5-fluorouracil (5-FU) for triple-negative breast cancer (TNBC) treatment. The PCG hydrogel was fabricated by blending synthesized [poly ( N -isopropyl acrylamide-co-itaconic acid), pNIAAm-co-IA, PNI] with CS in the presence of GP as a crosslinking agent. The interaction between PCG hydrogel compositions was characterized by Fourier transforms infrared, NMR spectroscopy, and scanning electron microscopy. The PCG hydrogel presented an interconnected and porous structure with similar pore size, rapid swelling/deswelling rate in response to both temperature and pH change, and biocompatibility, upon which it was proposed as a great drug carrier. 5-FU had a dual thermo- and pH-responsive controlled release behavior from the PCG hydrogel and displayed an accelerated release rate in an acidic pH environment than in a neutral pH condition. The application of 5-FU-loaded PCG hydrogel exhibited a more promoted anticancer activity than 5-FU against the growth of TNBC cells both in vitro and in vivo . The outcomes suggested that the PCG hydrogel could be an excellent platform for local drug-delivery systems in the clinical therapy of TNBC.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"220-231"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001657","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent hydrogels are promising in constructing scaffolds for the controlled delivery of drugs. Here, a dual thermo- and pH-responsive hydrogel called PCG [poly ( N -isopropyl acrylamide-co-itaconic acid)/chitosan/glycerophosphate (PNI/CS/GP)] was established as the carrier of 5-fluorouracil (5-FU) for triple-negative breast cancer (TNBC) treatment. The PCG hydrogel was fabricated by blending synthesized [poly ( N -isopropyl acrylamide-co-itaconic acid), pNIAAm-co-IA, PNI] with CS in the presence of GP as a crosslinking agent. The interaction between PCG hydrogel compositions was characterized by Fourier transforms infrared, NMR spectroscopy, and scanning electron microscopy. The PCG hydrogel presented an interconnected and porous structure with similar pore size, rapid swelling/deswelling rate in response to both temperature and pH change, and biocompatibility, upon which it was proposed as a great drug carrier. 5-FU had a dual thermo- and pH-responsive controlled release behavior from the PCG hydrogel and displayed an accelerated release rate in an acidic pH environment than in a neutral pH condition. The application of 5-FU-loaded PCG hydrogel exhibited a more promoted anticancer activity than 5-FU against the growth of TNBC cells both in vitro and in vivo . The outcomes suggested that the PCG hydrogel could be an excellent platform for local drug-delivery systems in the clinical therapy of TNBC.
期刊介绍:
Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.