Design and Evaluation of 5-Oxo-1,2,4-triazole-3-carboxamide Compounds as Promising Anticancer Agents: Synthesis, Characterization, In vitro Cytotoxicity and Molecular Docking Studies.

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Rajitha Balavanthapu, Girija Sastry Vedula
{"title":"Design and Evaluation of 5-Oxo-1,2,4-triazole-3-carboxamide Compounds as Promising Anticancer Agents: Synthesis, Characterization, In vitro Cytotoxicity and Molecular Docking Studies.","authors":"Rajitha Balavanthapu, Girija Sastry Vedula","doi":"10.2174/0118715206315373241014101856","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer presents a significant global health challenge, necessitating effective treatment strategies. While chemotherapy is widely employed, its non-specific nature can induce adverse effects on normal cells, prompting the exploration of targeted therapies. The 1,2,4-triazole scaffold has emerged as a promising element in anticancer drug development due to its structural diversity and potential to target cancer cells.</p><p><strong>Objective: </strong>This study aims to synthesize and evaluate novel derivatives derived from the 1,2,4-triazole scaffold for their potential as anticancer agents. Molecular docking techniques are employed to investigate the interactions between the designed derivatives and specific cancer-related targets, providing insights into potential underlying mechanisms.</p><p><strong>Methods: </strong>The synthesis involves a three-step process to produce 5-oxo-1,2,4-triazole-3-carboxamide derivatives. Various analytical techniques, including NMR and HRMS, validate the successful synthesis. Molecular docking studies utilize X-ray crystal structures of EGFR and CDK-4 obtained from the Protein Data Bank, employing the Schrödinger suite for ligand preparation and Glide's extra-precision docking modes for scoring.</p><p><strong>Results: </strong>The synthesis yields compounds with moderate to good yields, supported by detailed characterization. Molecular docking scores for the derivatives against EGFR and CDK-4 revealed diverse affinities influenced by distinct substituents. Compounds with hydroxyl, and halogen, substitutions exhibited notable binding affinities, while alkyl and amino substitutions showed varying effects. The 1,2,4-triazole derivatives demonstrated potential for targeted cancer therapy.</p><p><strong>Conclusion: </strong>The study highlights the successful synthesis of 5-oxo-1,2,4-triazole-3-carboxamides and their diverse interactions with cancer-related targets. The findings emphasized the potential of these derivatives as candidates for further development as anticancer agents, offering insights into structure-activity relationships. The 1,2,4-triazole scaffold stands out as a promising platform for advancing cancer treatment with enhanced precision and efficacy.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206315373241014101856","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cancer presents a significant global health challenge, necessitating effective treatment strategies. While chemotherapy is widely employed, its non-specific nature can induce adverse effects on normal cells, prompting the exploration of targeted therapies. The 1,2,4-triazole scaffold has emerged as a promising element in anticancer drug development due to its structural diversity and potential to target cancer cells.

Objective: This study aims to synthesize and evaluate novel derivatives derived from the 1,2,4-triazole scaffold for their potential as anticancer agents. Molecular docking techniques are employed to investigate the interactions between the designed derivatives and specific cancer-related targets, providing insights into potential underlying mechanisms.

Methods: The synthesis involves a three-step process to produce 5-oxo-1,2,4-triazole-3-carboxamide derivatives. Various analytical techniques, including NMR and HRMS, validate the successful synthesis. Molecular docking studies utilize X-ray crystal structures of EGFR and CDK-4 obtained from the Protein Data Bank, employing the Schrödinger suite for ligand preparation and Glide's extra-precision docking modes for scoring.

Results: The synthesis yields compounds with moderate to good yields, supported by detailed characterization. Molecular docking scores for the derivatives against EGFR and CDK-4 revealed diverse affinities influenced by distinct substituents. Compounds with hydroxyl, and halogen, substitutions exhibited notable binding affinities, while alkyl and amino substitutions showed varying effects. The 1,2,4-triazole derivatives demonstrated potential for targeted cancer therapy.

Conclusion: The study highlights the successful synthesis of 5-oxo-1,2,4-triazole-3-carboxamides and their diverse interactions with cancer-related targets. The findings emphasized the potential of these derivatives as candidates for further development as anticancer agents, offering insights into structure-activity relationships. The 1,2,4-triazole scaffold stands out as a promising platform for advancing cancer treatment with enhanced precision and efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信