The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease.

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Proteomics Pub Date : 2025-01-10 DOI:10.1002/pmic.202400108
Marta B Lopes, Roberta Coletti, Flore Duranton, Griet Glorieux, Mayra Alejandra Jaimes Campos, Julie Klein, Matthias Ley, Paul Perco, Alexia Sampri, Aviad Tur-Sinai
{"title":"The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease.","authors":"Marta B Lopes, Roberta Coletti, Flore Duranton, Griet Glorieux, Mayra Alejandra Jaimes Campos, Julie Klein, Matthias Ley, Paul Perco, Alexia Sampri, Aviad Tur-Sinai","doi":"10.1002/pmic.202400108","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) poses a significant and growing global health challenge, making early detection and slowing disease progression essential for improving patient outcomes. Traditional diagnostic methods such as glomerular filtration rate and proteinuria are insufficient to capture the complexity of CKD. In contrast, omics technologies have shed light on the molecular mechanisms of CKD, helping to identify biomarkers for disease assessment and management. Artificial intelligence (AI) and machine learning (ML) could transform CKD care, enabling biomarker discovery for early diagnosis and risk prediction, and personalized treatment. By integrating multi-omics datasets, AI can provide real-time, patient-specific insights, improve decision support, and optimize cost efficiency by early detection and avoidance of unnecessary treatments. Multidisciplinary collaborations and sophisticated ML methods are essential to advance diagnostic and therapeutic strategies in CKD. This review presents a comprehensive overview of the pipeline for translating CKD omics data into personalized treatment, covering recent advances in omics research, the role of ML in CKD, and the critical need for clinical validation of AI-driven discoveries to ensure their efficacy, relevance, and cost-effectiveness in patient care.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400108"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic kidney disease (CKD) poses a significant and growing global health challenge, making early detection and slowing disease progression essential for improving patient outcomes. Traditional diagnostic methods such as glomerular filtration rate and proteinuria are insufficient to capture the complexity of CKD. In contrast, omics technologies have shed light on the molecular mechanisms of CKD, helping to identify biomarkers for disease assessment and management. Artificial intelligence (AI) and machine learning (ML) could transform CKD care, enabling biomarker discovery for early diagnosis and risk prediction, and personalized treatment. By integrating multi-omics datasets, AI can provide real-time, patient-specific insights, improve decision support, and optimize cost efficiency by early detection and avoidance of unnecessary treatments. Multidisciplinary collaborations and sophisticated ML methods are essential to advance diagnostic and therapeutic strategies in CKD. This review presents a comprehensive overview of the pipeline for translating CKD omics data into personalized treatment, covering recent advances in omics research, the role of ML in CKD, and the critical need for clinical validation of AI-driven discoveries to ensure their efficacy, relevance, and cost-effectiveness in patient care.

组学驱动的机器学习路径对慢性肾脏疾病具有成本效益的精准医疗。
慢性肾脏疾病(CKD)构成了重大且日益增长的全球健康挑战,因此早期发现和减缓疾病进展对于改善患者预后至关重要。传统的诊断方法如肾小球滤过率和蛋白尿不足以反映慢性肾病的复杂性。相比之下,组学技术揭示了CKD的分子机制,有助于识别疾病评估和管理的生物标志物。人工智能(AI)和机器学习(ML)可以改变慢性肾病的治疗,使生物标志物的发现能够用于早期诊断和风险预测,以及个性化治疗。通过整合多组学数据集,人工智能可以提供实时的、针对患者的见解,改善决策支持,并通过早期发现和避免不必要的治疗来优化成本效率。多学科合作和复杂的ML方法对于推进CKD的诊断和治疗策略至关重要。这篇综述全面概述了将CKD组学数据转化为个性化治疗的管道,涵盖了组学研究的最新进展,ML在CKD中的作用,以及人工智能驱动的发现的临床验证的迫切需要,以确保其在患者护理中的有效性、相关性和成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信