Sagnik Sengupta , Amit Pandit , Mena Asha Krishnan , Rajesh Sharma , Sumith A Kularatne , Venkatesh Chelvam
{"title":"Design, synthesis, and biological evaluation of novel thiourea derivatives as small molecule inhibitors for prostate specific membrane antigen","authors":"Sagnik Sengupta , Amit Pandit , Mena Asha Krishnan , Rajesh Sharma , Sumith A Kularatne , Venkatesh Chelvam","doi":"10.1016/j.bioorg.2025.108130","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer (PCa) has emerged to be the second leading cause of cancer-related deaths in men. Molecular imaging of PCa using targeted radiopharmaceuticals specifically to PCa cells promises accurate staging of primary disease, detection of localized and metastasized tumours, and helps predict the progression of the disease. Glutamate urea heterodimers have been popularly used as high-affinity small molecules in the binding pockets of popular and well-characterized PCa biomarker, prostate specific membrane antigen (PSMA). However, extensive studies in molecular docking and the QSAR model have predicted that bioisotere substitution of an oxygen atom with sulfur in the glutamate urea heterodimer molecules would yield a new library of high-affinity ligands in the nanomolar range to target PSMA. Based on these predictions, a new class of glutamate thiourea derivatives has been designed and developed for binding with PSMA. The <em>in silico</em> guided selection and chemical synthesis of glutamate thiourea small molecule PSMA inhibitors by a new methodology is described in this report. One of the high-affinity glutamate thiourea ligands was further chelated to radioisotopes such as <sup>99m</sup>Technetium using a chelating moiety via a peptide spacer and targeted to PSMA<sup>+</sup> LNCaP and 22Rv1 cells. The newly synthesized <sup>99m</sup>Tc-bioconjugate has shown nanomolar affinity to selectively target PSMA<sup>+</sup> cancers during <em>in vitro</em> studies. Collectively, these PSMA-specific small molecule radio-imaging agents show significant promise in monitoring disease prognosis and treatment selection of PCa patients.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"155 ","pages":"Article 108130"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825000100","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) has emerged to be the second leading cause of cancer-related deaths in men. Molecular imaging of PCa using targeted radiopharmaceuticals specifically to PCa cells promises accurate staging of primary disease, detection of localized and metastasized tumours, and helps predict the progression of the disease. Glutamate urea heterodimers have been popularly used as high-affinity small molecules in the binding pockets of popular and well-characterized PCa biomarker, prostate specific membrane antigen (PSMA). However, extensive studies in molecular docking and the QSAR model have predicted that bioisotere substitution of an oxygen atom with sulfur in the glutamate urea heterodimer molecules would yield a new library of high-affinity ligands in the nanomolar range to target PSMA. Based on these predictions, a new class of glutamate thiourea derivatives has been designed and developed for binding with PSMA. The in silico guided selection and chemical synthesis of glutamate thiourea small molecule PSMA inhibitors by a new methodology is described in this report. One of the high-affinity glutamate thiourea ligands was further chelated to radioisotopes such as 99mTechnetium using a chelating moiety via a peptide spacer and targeted to PSMA+ LNCaP and 22Rv1 cells. The newly synthesized 99mTc-bioconjugate has shown nanomolar affinity to selectively target PSMA+ cancers during in vitro studies. Collectively, these PSMA-specific small molecule radio-imaging agents show significant promise in monitoring disease prognosis and treatment selection of PCa patients.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.