Comparative Study of Polymer Globules and Liquid Droplets in Poor Solvents: Effects of Cosolvents and Solvent Quality.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Tushar Mahendrakar, Kaustubh Rane
{"title":"Comparative Study of Polymer Globules and Liquid Droplets in Poor Solvents: Effects of Cosolvents and Solvent Quality.","authors":"Tushar Mahendrakar, Kaustubh Rane","doi":"10.1021/acs.jpcb.4c07137","DOIUrl":null,"url":null,"abstract":"<p><p>We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents. Our findings show that both globules and droplets are nearly spherical, although droplets display slightly more anisotropy. In the absence of cosolvents, the surrounding solvent structures are similar for both globules and droplets. However, in the presence of cosolvents, significant differences arise in the liquid structure, with the disparities increasing as the solvent quality worsens. Cosolvents tend to accumulate near the surface of globules due to the restricted movement of bonded monomers, which partially immobilizes the cosolvents. This effect becomes more pronounced as the solvent quality declines. Interfacial free energy calculations reveal that cosolvents act like surfactants, promoting larger interfacial areas for both globules and droplets. This effect is more significant for globules due to the greater accumulation of cosolvents at their surface. Therefore, modeling polymer globules as liquid droplets may underestimate the impact of cosolvents on the stability of the globule state. Additionally, the transition states involved in polymer collapse in the presence of cosolvents differ from those involved in the nucleation of liquid droplets in the same solution.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07137","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents. Our findings show that both globules and droplets are nearly spherical, although droplets display slightly more anisotropy. In the absence of cosolvents, the surrounding solvent structures are similar for both globules and droplets. However, in the presence of cosolvents, significant differences arise in the liquid structure, with the disparities increasing as the solvent quality worsens. Cosolvents tend to accumulate near the surface of globules due to the restricted movement of bonded monomers, which partially immobilizes the cosolvents. This effect becomes more pronounced as the solvent quality declines. Interfacial free energy calculations reveal that cosolvents act like surfactants, promoting larger interfacial areas for both globules and droplets. This effect is more significant for globules due to the greater accumulation of cosolvents at their surface. Therefore, modeling polymer globules as liquid droplets may underestimate the impact of cosolvents on the stability of the globule state. Additionally, the transition states involved in polymer collapse in the presence of cosolvents differ from those involved in the nucleation of liquid droplets in the same solution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信