Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Marco Dirindin, Daniele Coslovich
{"title":"Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica.","authors":"Marco Dirindin, Daniele Coslovich","doi":"10.1021/acs.jpcb.4c06881","DOIUrl":null,"url":null,"abstract":"<p><p>We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures. Using appropriate cage-relative correlation functions, which suppress the effect of Mermin-Wagner fluctuations, we highlight the presence of two well-defined Arrhenius regimes separated by a narrow crossover region, which we connect to the thermodynamic anomalies and changes in the local structure. We find that the bond-orientational order grows steadily below the crossover temperature and is associated with transient crystalline domains of nanometric size. These findings raise fundamental questions about the nature of the glass structure in two dimensions and provide guidelines to interpret the experimental data.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06881","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures. Using appropriate cage-relative correlation functions, which suppress the effect of Mermin-Wagner fluctuations, we highlight the presence of two well-defined Arrhenius regimes separated by a narrow crossover region, which we connect to the thermodynamic anomalies and changes in the local structure. We find that the bond-orientational order grows steadily below the crossover temperature and is associated with transient crystalline domains of nanometric size. These findings raise fundamental questions about the nature of the glass structure in two dimensions and provide guidelines to interpret the experimental data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信