Olivia S Harlow, Vijay Raaj Ravi, Fang Ke, Nathan L Sanders, Elise Armstrong, Joseph P Mizgerd, Anukul T Shenoy
{"title":"The mysterious case of missing lymphocytes: a cautionary tale of interinstitutional variability in outcomes of lung dissociation protocols.","authors":"Olivia S Harlow, Vijay Raaj Ravi, Fang Ke, Nathan L Sanders, Elise Armstrong, Joseph P Mizgerd, Anukul T Shenoy","doi":"10.1152/ajplung.00323.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Rigor and reproducibility are vital to scientific advancement. It is unclear whether a protocol optimized for tissue dissociation in one institution performs well universally. Here, we share our brand-new lab's experience with interinstitutional variability that led to the discovery that a protocol optimized for murine lung dissociation at Boston University (BU) fails to reproduce similar CD4<sup>+</sup> T cell, CD8<sup>+</sup> T cell, and B cell outcomes at the University of Michigan at Ann Arbor (U-M). We report that the type 2 collagenase-based protocol from BU yields reduced numbers of lung lymphocytes at U-M, and this appeared to be a result of harsher collagenase activity despite using identical protocols, reagents, and vendors at both institutions. This variability could not be explained by higher Ca<sup>2+</sup> levels in Ann Arbor water (which we posited may heighten the collagenase activity) but instead appeared to be due to technical details within the protocol that led to the protocols behaving in an institution-specific manner. Indeed, we find that merely switching between the protocol from BU and a newly optimized protocol at U-M was sufficient to improve (or worsen) lymphocyte yields from murine lungs when synchronously performed at both institutions. Taken together, although the reason(s) for the interinstitutional variability in lymphocyte outcomes remains unknown, this report serves as a cautionary tale against directly adopting lung dissociation protocols across institutions without reoptimization, and calls for careful inspection of cross-institutional reproducibility of previously described protocols.<b>NEW & NOTEWORTHY</b> Rigor and reproducibility are vital to scientific advancement. It is unclear whether a protocol optimized for tissue dissociation in one institution performs well universally. Here, the authors share their experience with interinstitutional variability that led to the discovery that a protocol optimized for murine lung dissociation in one institution failed to reproduce similar lymphocyte outcomes elsewhere. This report, thus, serves as a cautionary tale against directly adopting tissue dissociation protocols across institutions without reoptimization.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L260-L266"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00323.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rigor and reproducibility are vital to scientific advancement. It is unclear whether a protocol optimized for tissue dissociation in one institution performs well universally. Here, we share our brand-new lab's experience with interinstitutional variability that led to the discovery that a protocol optimized for murine lung dissociation at Boston University (BU) fails to reproduce similar CD4+ T cell, CD8+ T cell, and B cell outcomes at the University of Michigan at Ann Arbor (U-M). We report that the type 2 collagenase-based protocol from BU yields reduced numbers of lung lymphocytes at U-M, and this appeared to be a result of harsher collagenase activity despite using identical protocols, reagents, and vendors at both institutions. This variability could not be explained by higher Ca2+ levels in Ann Arbor water (which we posited may heighten the collagenase activity) but instead appeared to be due to technical details within the protocol that led to the protocols behaving in an institution-specific manner. Indeed, we find that merely switching between the protocol from BU and a newly optimized protocol at U-M was sufficient to improve (or worsen) lymphocyte yields from murine lungs when synchronously performed at both institutions. Taken together, although the reason(s) for the interinstitutional variability in lymphocyte outcomes remains unknown, this report serves as a cautionary tale against directly adopting lung dissociation protocols across institutions without reoptimization, and calls for careful inspection of cross-institutional reproducibility of previously described protocols.NEW & NOTEWORTHY Rigor and reproducibility are vital to scientific advancement. It is unclear whether a protocol optimized for tissue dissociation in one institution performs well universally. Here, the authors share their experience with interinstitutional variability that led to the discovery that a protocol optimized for murine lung dissociation in one institution failed to reproduce similar lymphocyte outcomes elsewhere. This report, thus, serves as a cautionary tale against directly adopting tissue dissociation protocols across institutions without reoptimization.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.