Jun Zhao, Hangcheng Liu, Leyao Kang, Wanling Gao, Quan Lu, Yuan Rao, Zhenyu Yue
{"title":"deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.","authors":"Jun Zhao, Hangcheng Liu, Leyao Kang, Wanling Gao, Quan Lu, Yuan Rao, Zhenyu Yue","doi":"10.1021/acs.jcim.4c01913","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years. Although there are many machine learning-based AMP identification tools, most of them do not focus on or only focus on a few functional activities. Predicting the multiple activities of antimicrobial peptides can help discover candidate peptides with broad-spectrum antimicrobial ability. We propose a two-stage AMP predictor deep-AMPpred, in which the first stage distinguishes AMP from other peptides, and the second stage solves the multilabel problem of 13 common functional activities of AMP. deep-AMPpred combines the ESM-2 model to encode the features of AMP and integrates CNN, BiLSTM, and CBAM models to discover AMP and its functional activities. The ESM-2 model captures the global contextual features of the peptide sequence, while CNN, BiLSTM, and CBAM combine local feature extraction, long-term and short-term dependency modeling, and attention mechanisms to improve the performance of deep-AMPpred in AMP and its function prediction. Experimental results demonstrate that deep-AMPpred performs well in accurately identifying AMPs and predicting their functional activities. This confirms the effectiveness of using the ESM-2 model to capture meaningful peptide sequence features and integrating multiple deep learning models for AMP identification and activity prediction.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"997-1008"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01913","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years. Although there are many machine learning-based AMP identification tools, most of them do not focus on or only focus on a few functional activities. Predicting the multiple activities of antimicrobial peptides can help discover candidate peptides with broad-spectrum antimicrobial ability. We propose a two-stage AMP predictor deep-AMPpred, in which the first stage distinguishes AMP from other peptides, and the second stage solves the multilabel problem of 13 common functional activities of AMP. deep-AMPpred combines the ESM-2 model to encode the features of AMP and integrates CNN, BiLSTM, and CBAM models to discover AMP and its functional activities. The ESM-2 model captures the global contextual features of the peptide sequence, while CNN, BiLSTM, and CBAM combine local feature extraction, long-term and short-term dependency modeling, and attention mechanisms to improve the performance of deep-AMPpred in AMP and its function prediction. Experimental results demonstrate that deep-AMPpred performs well in accurately identifying AMPs and predicting their functional activities. This confirms the effectiveness of using the ESM-2 model to capture meaningful peptide sequence features and integrating multiple deep learning models for AMP identification and activity prediction.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.