Computational Analysis of CC2D1A Missense Mutations: Insight into Protein Structure and Interaction Dynamics.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anwar Abuelrub, Ismail Erol, Nurdeniz Nalbant Bingol, Sebnem Ozemri Sag, Sehime G Temel, Serdar Durdağı
{"title":"Computational Analysis of <i>CC2D1A</i> Missense Mutations: Insight into Protein Structure and Interaction Dynamics.","authors":"Anwar Abuelrub, Ismail Erol, Nurdeniz Nalbant Bingol, Sebnem Ozemri Sag, Sehime G Temel, Serdar Durdağı","doi":"10.1021/acschemneuro.4c00570","DOIUrl":null,"url":null,"abstract":"<p><p><i>CC2D1A</i> is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.1552G > A (GLU518LYS) missense mutation in the <i>CC2D1A</i> in an 18-year-old male, linking it to intellectual disability and autism. In addition to the GLU518LYS mutation, we conducted a comprehensive analysis of other predefined missense mutations (i.e., PRO192LEU, GLN506ARG, PRO532LEU, GLY781VAL, and GLY781GLU) found within the <i>CC2D1A</i>. Utilizing all-atom molecular dynamics (MD) simulations and neighborhood interaction analyses, we delve into the impact of these mutations on protein structure and function at an atomic level, aiming to shed light on their contribution to the pathogenesis of related diseases. The results suggest that GLU518LYS, GLY781VAL, and GLY781GLU mutations did not significantly alter overall global protein structure compared to the wild type, while PRO192LEU, GLN506ARG, and PRO532LEU exhibited slightly higher protein root-mean-square deviation (RMSD) values, which may indicate potential impacts on whole protein stability. Moreover, neighborhood interaction analysis indicated that ASP85 emerges as a unique interaction partner specifically associated with the GLU518LYS mutation, whereas LYS75, which interacts with the ASP85 in the mutated form, is absent in the wild type. This alteration signifies a crucial reconfiguration in the local interaction network at the site of the mutation.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00570","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CC2D1A is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.1552G > A (GLU518LYS) missense mutation in the CC2D1A in an 18-year-old male, linking it to intellectual disability and autism. In addition to the GLU518LYS mutation, we conducted a comprehensive analysis of other predefined missense mutations (i.e., PRO192LEU, GLN506ARG, PRO532LEU, GLY781VAL, and GLY781GLU) found within the CC2D1A. Utilizing all-atom molecular dynamics (MD) simulations and neighborhood interaction analyses, we delve into the impact of these mutations on protein structure and function at an atomic level, aiming to shed light on their contribution to the pathogenesis of related diseases. The results suggest that GLU518LYS, GLY781VAL, and GLY781GLU mutations did not significantly alter overall global protein structure compared to the wild type, while PRO192LEU, GLN506ARG, and PRO532LEU exhibited slightly higher protein root-mean-square deviation (RMSD) values, which may indicate potential impacts on whole protein stability. Moreover, neighborhood interaction analysis indicated that ASP85 emerges as a unique interaction partner specifically associated with the GLU518LYS mutation, whereas LYS75, which interacts with the ASP85 in the mutated form, is absent in the wild type. This alteration signifies a crucial reconfiguration in the local interaction network at the site of the mutation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信