Chuan-Shen Hu, Rishikanta Mayengbam, Kelin Xia, Tze Chien Sum
{"title":"Quotient Complex (QC)-Based Machine Learning for 2D Hybrid Perovskite Design.","authors":"Chuan-Shen Hu, Rishikanta Mayengbam, Kelin Xia, Tze Chien Sum","doi":"10.1021/acs.jcim.4c02033","DOIUrl":null,"url":null,"abstract":"<p><p>With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications. In this context, this work introduces a novel computational topology framework termed the quotient complex (QC), which serves as the foundation for the material representation. The proposed QC-based features are seamlessly integrated with learning models for the advancement of 2D perovskite design. At the heart of this framework lies the quotient complex descriptors (QCDs), representing a quotient variation of simplicial complexes derived from materials' unit cell and periodic boundary conditions. Differing from prior material representations, this approach encodes higher-order interactions and periodicity information simultaneously. Based on the well-established new materials for solar energetics (NMSE) databank, the proposed QC-based machine learning models exhibit superior performance against all existing counterparts. This underscores the paramount role of periodicity information in predicting material functionality, while also showcasing the remarkable efficiency of the QC-based model in characterizing materials' structural attributes.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"660-671"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02033","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications. In this context, this work introduces a novel computational topology framework termed the quotient complex (QC), which serves as the foundation for the material representation. The proposed QC-based features are seamlessly integrated with learning models for the advancement of 2D perovskite design. At the heart of this framework lies the quotient complex descriptors (QCDs), representing a quotient variation of simplicial complexes derived from materials' unit cell and periodic boundary conditions. Differing from prior material representations, this approach encodes higher-order interactions and periodicity information simultaneously. Based on the well-established new materials for solar energetics (NMSE) databank, the proposed QC-based machine learning models exhibit superior performance against all existing counterparts. This underscores the paramount role of periodicity information in predicting material functionality, while also showcasing the remarkable efficiency of the QC-based model in characterizing materials' structural attributes.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.