{"title":"mTOR Variants Activation Discovers PI3K-like Cryptic Pocket, Expanding Allosteric, Mutant-Selective Inhibitor Designs.","authors":"Yonglan Liu, Wengang Zhang, Hyunbum Jang, Ruth Nussinov","doi":"10.1021/acs.jcim.4c02022","DOIUrl":null,"url":null,"abstract":"<p><p>mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants. We observed that conformational changes within mTOR kinase domain are associated with multiple mutational activation events. The mutations disturb the α-packing formed by the kαAL, kα3, kα9, kα9b, and kα10 helices in the kinase domain, creating cryptic pocket. Its opening correlates with opening of the catalytic cleft, including active site residues realignment, favoring catalysis. The cryptic pocket created by disrupted α-packing coincides with the allosteric pocket in PI3Kα can be harmoniously fitted by the PI3Kα allosteric inhibitor RLY-2608, suggesting that analogous drugs designed based on RLY-2608 can restore the packed α-structure, resulting in mTOR inactive conformation. Our results exemplify that knowledge of detailed kinase activation mechanisms can inform innovative allosteric inhibitor development.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02022","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants. We observed that conformational changes within mTOR kinase domain are associated with multiple mutational activation events. The mutations disturb the α-packing formed by the kαAL, kα3, kα9, kα9b, and kα10 helices in the kinase domain, creating cryptic pocket. Its opening correlates with opening of the catalytic cleft, including active site residues realignment, favoring catalysis. The cryptic pocket created by disrupted α-packing coincides with the allosteric pocket in PI3Kα can be harmoniously fitted by the PI3Kα allosteric inhibitor RLY-2608, suggesting that analogous drugs designed based on RLY-2608 can restore the packed α-structure, resulting in mTOR inactive conformation. Our results exemplify that knowledge of detailed kinase activation mechanisms can inform innovative allosteric inhibitor development.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.