{"title":"High-Accuracy Identification and Structure-Activity Analysis of Antioxidant Peptides via Deep Learning and Quantum Chemistry.","authors":"Wanxing Li, Xuejing Liu, Yuanfa Liu, Zhaojun Zheng","doi":"10.1021/acs.jcim.4c01713","DOIUrl":null,"url":null,"abstract":"<p><p>Antioxidant peptides (AOPs) hold great promise for mitigating oxidative-stress-related diseases, but their discovery is hindered by inefficient and time-consuming traditional methods. To address this, we developed an innovative framework combining machine learning and quantum chemistry to accelerate AOP identification and analyze structure-activity relationships. A Bi-LSTM-based model, AOPP, achieved superior performance with accuracies of 0.9043 and 0.9267, precisions of 0.9767 and 0.9848, and Matthews correlation coefficients (MCCs) of 0.818 and 0.859 on two data sets, outperforming existing methods. Compared with XGBoost and LightGBM, AOPP demonstrated a 4.67% improvement in accuracy. Feature fusion significantly enhanced classification, as validated by UMAP visualization. Experimental validation of ten peptides confirmed the antioxidant activity, with LLA exhibiting the highest DPPH and ABTS scavenging rates (0.108 and 0.437 mmol/g, respectively). Quantum chemical calculations identified LLA's lowest HOMO-LUMO gap (Δ<i>E</i> = 0.26 eV) and C<sub>3</sub>-H<sub>26</sub> as the key active site contributing to its superior antioxidant potential. This study highlights the synergy of machine learning and quantum chemistry, offering an efficient framework for AOP discovery with broad applications in therapeutics and functional foods.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"603-612"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01713","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antioxidant peptides (AOPs) hold great promise for mitigating oxidative-stress-related diseases, but their discovery is hindered by inefficient and time-consuming traditional methods. To address this, we developed an innovative framework combining machine learning and quantum chemistry to accelerate AOP identification and analyze structure-activity relationships. A Bi-LSTM-based model, AOPP, achieved superior performance with accuracies of 0.9043 and 0.9267, precisions of 0.9767 and 0.9848, and Matthews correlation coefficients (MCCs) of 0.818 and 0.859 on two data sets, outperforming existing methods. Compared with XGBoost and LightGBM, AOPP demonstrated a 4.67% improvement in accuracy. Feature fusion significantly enhanced classification, as validated by UMAP visualization. Experimental validation of ten peptides confirmed the antioxidant activity, with LLA exhibiting the highest DPPH and ABTS scavenging rates (0.108 and 0.437 mmol/g, respectively). Quantum chemical calculations identified LLA's lowest HOMO-LUMO gap (ΔE = 0.26 eV) and C3-H26 as the key active site contributing to its superior antioxidant potential. This study highlights the synergy of machine learning and quantum chemistry, offering an efficient framework for AOP discovery with broad applications in therapeutics and functional foods.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.