{"title":"Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field on disks in the strong field limit","authors":"Matthias Baur, Timo Weidl","doi":"10.1007/s13324-024-01008-8","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the magnetic Dirichlet Laplacian with constant magnetic field on domains of finite measure. First, in the case of a disk, we prove that the eigenvalue branches with respect to the field strength behave asymptotically linear with an exponentially small remainder term as the field strength goes to infinity. We compute the asymptotic expression for this remainder term. Second, we show that for sufficiently large magnetic field strengths, the spectral bound corresponding to the Pólya conjecture for the non-magnetic Dirichlet Laplacian is violated up to a sharp excess factor which is independent of the domain.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-01008-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-01008-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the magnetic Dirichlet Laplacian with constant magnetic field on domains of finite measure. First, in the case of a disk, we prove that the eigenvalue branches with respect to the field strength behave asymptotically linear with an exponentially small remainder term as the field strength goes to infinity. We compute the asymptotic expression for this remainder term. Second, we show that for sufficiently large magnetic field strengths, the spectral bound corresponding to the Pólya conjecture for the non-magnetic Dirichlet Laplacian is violated up to a sharp excess factor which is independent of the domain.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.