Guoli Wu;Zhiyong Feng;Shizhan Chen;Hongyue Wu;Xiao Xue;Jianmao Xiao;Guodong Fan;Hongqi Chen;Jingyu Li
{"title":"FairSort: Learning to Fair Rank for Personalized Recommendations in Two-Sided Platforms","authors":"Guoli Wu;Zhiyong Feng;Shizhan Chen;Hongyue Wu;Xiao Xue;Jianmao Xiao;Guodong Fan;Hongqi Chen;Jingyu Li","doi":"10.1109/TKDE.2024.3509912","DOIUrl":null,"url":null,"abstract":"Traditional recommendation systems focus on maximizing user satisfaction by suggesting their favorite items. This user-centric approach may lead to unfair exposure distribution among the providers. On the contrary, a provider-centric design might become unfair to the users. Therefore, this paper proposes a re-ranking model FairSort\n<sup>1</sup>\n to find a trade-off solution among user-side fairness, provider-side fairness, and personalized recommendations utility. Previous works habitually treat this issue as a knapsack problem, incorporating both-side fairness as constraints. In this paper, we adopt a novel perspective, treating each recommendation list as a runway rather than a knapsack. In this perspective, each item on the runway gains a velocity and runs within a specific time, achieving re-ranking for both-side fairness. Meanwhile, we ensure the Minimum Utility Guarantee for personalized recommendations by designing a Binary Search approach. This can provide more reliable recommendations compared to the conventional greedy strategy based on the knapsack problem. We further broaden the applicability of FairSort, designing two versions for online and offline recommendation scenarios. Theoretical analysis and extensive experiments on real-world datasets indicate that FairSort can ensure more reliable personalized recommendations while considering fairness for both the provider and user.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"641-654"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10772283/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional recommendation systems focus on maximizing user satisfaction by suggesting their favorite items. This user-centric approach may lead to unfair exposure distribution among the providers. On the contrary, a provider-centric design might become unfair to the users. Therefore, this paper proposes a re-ranking model FairSort
1
to find a trade-off solution among user-side fairness, provider-side fairness, and personalized recommendations utility. Previous works habitually treat this issue as a knapsack problem, incorporating both-side fairness as constraints. In this paper, we adopt a novel perspective, treating each recommendation list as a runway rather than a knapsack. In this perspective, each item on the runway gains a velocity and runs within a specific time, achieving re-ranking for both-side fairness. Meanwhile, we ensure the Minimum Utility Guarantee for personalized recommendations by designing a Binary Search approach. This can provide more reliable recommendations compared to the conventional greedy strategy based on the knapsack problem. We further broaden the applicability of FairSort, designing two versions for online and offline recommendation scenarios. Theoretical analysis and extensive experiments on real-world datasets indicate that FairSort can ensure more reliable personalized recommendations while considering fairness for both the provider and user.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.