{"title":"3D Imaging Resolves Human Pancreatic Duct-β-Cell Clusters During Cystic Change","authors":"Chih-Yuan Lee, Ting-Chun Kuo, Ya-Hsien Chou, Shih-Jung Peng, Fu-Ting Hsiao, Mei-Hsin Chung, Li-Wen Lo, Chia-Ning Shen, Hung-Jen Chien, Hsiu-Pi Chang, Chien-Chia Chen, Yung-Ming Jeng, Yu-Wen Tien, Shiue-Cheng Tang","doi":"10.2337/db24-0824","DOIUrl":null,"url":null,"abstract":"Pancreatic cystic changes in adults are increasingly identified through advanced cross-sectional imaging. However, the impact of initial/intra-lobular epithelial remodeling on the local β-cell population remains unclear. In this study, we examined 10 human cadaveric donor pancreases (tail and body regions) via integration of stereomicroscopy, clinical H&E histology, and 3D immunohistochemistry, identifying 36 microcysts (size: 1.22±0.56 mm) alongside 54 low-grade pancreatic intraepithelial neoplasias (positive control of epithelial remodeling; size: 2.42±1.05 mm). Both conditions exhibited significant increases in CK7 and insulin immunoreactive signals compared with normal lobules. Importantly, despite luminal contents of microcysts causing false positives (autofluorescence) in fluorescence imaging, the defined cystic epithelium showed distinct duct-β-cell associations—including β-cells in the epithelium and duct-β-cell clusters—visualized via antifade 3D/Airyscan super-resolution imaging in the high-refractive-index polymer. The peri-luminal β-cells displayed insulin+ vesicles residing near the basal domain, while the CK7+ cytokeratins in duct cells accumulated in the apical domain, underlining polarized tissue and cellular organizations. Overall, in microcyst formation, we demonstrate local and associated pancreatic exocrine and endocrine tissue remodeling. Because artifacts are a concern in β-cell investigation in a novel environment, our work using 3D-labeled human pancreas with cytokeratin and vesicle resolving powers provides a robust approach for characterizing the duct-β-cell association in a clinically relevant setting.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"6 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0824","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cystic changes in adults are increasingly identified through advanced cross-sectional imaging. However, the impact of initial/intra-lobular epithelial remodeling on the local β-cell population remains unclear. In this study, we examined 10 human cadaveric donor pancreases (tail and body regions) via integration of stereomicroscopy, clinical H&E histology, and 3D immunohistochemistry, identifying 36 microcysts (size: 1.22±0.56 mm) alongside 54 low-grade pancreatic intraepithelial neoplasias (positive control of epithelial remodeling; size: 2.42±1.05 mm). Both conditions exhibited significant increases in CK7 and insulin immunoreactive signals compared with normal lobules. Importantly, despite luminal contents of microcysts causing false positives (autofluorescence) in fluorescence imaging, the defined cystic epithelium showed distinct duct-β-cell associations—including β-cells in the epithelium and duct-β-cell clusters—visualized via antifade 3D/Airyscan super-resolution imaging in the high-refractive-index polymer. The peri-luminal β-cells displayed insulin+ vesicles residing near the basal domain, while the CK7+ cytokeratins in duct cells accumulated in the apical domain, underlining polarized tissue and cellular organizations. Overall, in microcyst formation, we demonstrate local and associated pancreatic exocrine and endocrine tissue remodeling. Because artifacts are a concern in β-cell investigation in a novel environment, our work using 3D-labeled human pancreas with cytokeratin and vesicle resolving powers provides a robust approach for characterizing the duct-β-cell association in a clinically relevant setting.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.