Testing the robustness of the BAO determination in the presence of massive neutrinos

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Adriana Nadal-Matosas, Héctor Gil-Marín and Licia Verde
{"title":"Testing the robustness of the BAO determination in the presence of massive neutrinos","authors":"Adriana Nadal-Matosas, Héctor Gil-Marín and Licia Verde","doi":"10.1088/1475-7516/2025/01/045","DOIUrl":null,"url":null,"abstract":"We study the robustness of the Baryon Acoustic Oscillation (BAO) feature in the large-scale structure in the presence of massive neutrinos. In the standard BAO analysis pipeline a reference cosmological model is assumed to boost the BAO peak through the so-called reconstruction technique and in the modelling of the BAO feature to extract the cosmological information. State-of-the art spectroscopic BAO measurements, such as the Dark Energy Spectroscopic Instrument claim an aggregate precision of 0.52% on the BAO scale, with a systematic error of 0.1% associated to the assumption of a reference cosmology when measuring and analyzing the BAO feature. While the systematic effect induced by this arbitrary choice of fiducial cosmology has been studied for a wide range of ΛCDM-like models, it has not yet been tested for reference cosmologies with massive neutrinos with the precision afforded by next generation surveys. In this context, we employ the Quijote high-resolution dark-matter simulations with haloes above a mass of M ∼ 2×1013h-1M⊙, with different values for the total sum of neutrinos masses, ∑mν [eV] = 0, 0.1, 0,2, 0.4 to study and quantify the impact of the pipeline's built-in assumption of massless neutrinos on the measurement of the BAO signal, with a special focus on the BAO reconstruction technique. We determine that any additional systematic bias introduced by the assumption of massless neutrinos is no greater than 0.1% (0.2%) for the isotropic (anisotropic) measurement. We expect these conclusions also hold for galaxies provided that neutrino properties do not alter the galaxy-halo connection.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"24 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/045","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the robustness of the Baryon Acoustic Oscillation (BAO) feature in the large-scale structure in the presence of massive neutrinos. In the standard BAO analysis pipeline a reference cosmological model is assumed to boost the BAO peak through the so-called reconstruction technique and in the modelling of the BAO feature to extract the cosmological information. State-of-the art spectroscopic BAO measurements, such as the Dark Energy Spectroscopic Instrument claim an aggregate precision of 0.52% on the BAO scale, with a systematic error of 0.1% associated to the assumption of a reference cosmology when measuring and analyzing the BAO feature. While the systematic effect induced by this arbitrary choice of fiducial cosmology has been studied for a wide range of ΛCDM-like models, it has not yet been tested for reference cosmologies with massive neutrinos with the precision afforded by next generation surveys. In this context, we employ the Quijote high-resolution dark-matter simulations with haloes above a mass of M ∼ 2×1013h-1M⊙, with different values for the total sum of neutrinos masses, ∑mν [eV] = 0, 0.1, 0,2, 0.4 to study and quantify the impact of the pipeline's built-in assumption of massless neutrinos on the measurement of the BAO signal, with a special focus on the BAO reconstruction technique. We determine that any additional systematic bias introduced by the assumption of massless neutrinos is no greater than 0.1% (0.2%) for the isotropic (anisotropic) measurement. We expect these conclusions also hold for galaxies provided that neutrino properties do not alter the galaxy-halo connection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信