Isometric automorphisms of some reflexive algebras

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhujun Yang, Hongjie Chen
{"title":"Isometric automorphisms of some reflexive algebras","authors":"Zhujun Yang,&nbsp;Hongjie Chen","doi":"10.1007/s43034-024-00400-6","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a class of subspace lattices <span>\\({\\mathcal {L}}\\)</span> on a separable infinite dimensional Hilbert space <span>\\(\\mathcal {K}\\)</span>. Let <span>\\({{\\,\\textrm{Alg}\\,}}{\\mathcal {L}}\\)</span> be the corresponding subspace lattice algebras. We show that every isometric automorphism of <span>\\({{\\,\\textrm{Alg}\\,}}{\\mathcal {L}}\\)</span> is spatial. We also show that <span>\\({{\\,\\textrm{Alg}\\,}}{\\mathcal {L}}\\)</span> are decomposable, and an operator in <span>\\({{\\,\\textrm{Alg}\\,}}{\\mathcal {L}}\\)</span> is single if and only if it is rank 1 under certain conditions.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00400-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a class of subspace lattices \({\mathcal {L}}\) on a separable infinite dimensional Hilbert space \(\mathcal {K}\). Let \({{\,\textrm{Alg}\,}}{\mathcal {L}}\) be the corresponding subspace lattice algebras. We show that every isometric automorphism of \({{\,\textrm{Alg}\,}}{\mathcal {L}}\) is spatial. We also show that \({{\,\textrm{Alg}\,}}{\mathcal {L}}\) are decomposable, and an operator in \({{\,\textrm{Alg}\,}}{\mathcal {L}}\) is single if and only if it is rank 1 under certain conditions.

一些自反代数的等距自同构
在可分离无限维希尔伯特空间\(\mathcal {K}\)上构造了一类子空间格\({\mathcal {L}}\)。设\({{\,\textrm{Alg}\,}}{\mathcal {L}}\)为对应的子空间格代数。我们证明了\({{\,\textrm{Alg}\,}}{\mathcal {L}}\)的每一个等距自同构都是空间的。我们还证明了\({{\,\textrm{Alg}\,}}{\mathcal {L}}\)是可分解的,并且\({{\,\textrm{Alg}\,}}{\mathcal {L}}\)中的一个操作符是单个的,当且仅当它在某些条件下是排名1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信