An accelerated Tseng type method for solving zero point problems and certain optimization problems

IF 0.9 Q2 MATHEMATICS
A. A. Mebawondu, H. A. Abass, O. K. Oyewole
{"title":"An accelerated Tseng type method for solving zero point problems and certain optimization problems","authors":"A. A. Mebawondu,&nbsp;H. A. Abass,&nbsp;O. K. Oyewole","doi":"10.1007/s13370-024-01217-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we proposed a modified Tseng’s splitting iterative algorithm for approximating a solution of split feasibility problem for zero and fixed point problems. By incorporating an inertial extrapolation method and Halpern iterative technique, we established a strong convergence result for approximating a solution of split fixed point problem for a nonexpansive and quasinonexpansive mapping which is also a zero point of sum of two monotone operators in the framework of real Hilbert spaces. Furthermore, we present a numerical example to support our main result. The results obtained in this paper improve, extend and unify some related results in the literature.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-024-01217-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01217-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed a modified Tseng’s splitting iterative algorithm for approximating a solution of split feasibility problem for zero and fixed point problems. By incorporating an inertial extrapolation method and Halpern iterative technique, we established a strong convergence result for approximating a solution of split fixed point problem for a nonexpansive and quasinonexpansive mapping which is also a zero point of sum of two monotone operators in the framework of real Hilbert spaces. Furthermore, we present a numerical example to support our main result. The results obtained in this paper improve, extend and unify some related results in the literature.

求解零点问题及若干优化问题的加速Tseng型方法
本文提出了一种改进的Tseng分裂迭代算法,用于逼近零不动点问题的分裂可行性问题的解。结合惯性外推法和Halpern迭代技术,在实数Hilbert空间框架下,建立了一类非扩张和拟非扩张映射的分裂不动点问题的近似解的强收敛性结果,该映射也是两个单调算子和的零点。此外,我们给出了一个数值例子来支持我们的主要结果。本文所得结果改进、推广和统一了文献中的一些相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信