Comment on: “Energy spectrum of selected diatomic molecules (H\(_2\), CO, I\(_2\), NO) by the resolution of Schrödinger equation for combined potentials via NUFA method”

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Francisco M. Fernández
{"title":"Comment on: “Energy spectrum of selected diatomic molecules (H\\(_2\\), CO, I\\(_2\\), NO) by the resolution of Schrödinger equation for combined potentials via NUFA method”","authors":"Francisco M. Fernández","doi":"10.1007/s00894-024-06257-9","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum mechanics has proved to be suitable for the study of molecular systems. In particular, the Born-Oppenheimer approximation enables one to separate the motions of electrons and nuclei. In the case of diatomic molecules, this approximation leads to the so-called potential-energy function that provides the interaction between the two nuclei. There have recently been great misconceptions about the meaning of certain features of the potential-energy function like the equilibrium bond length and dissociation energy. We discuss the meaning of equilibrium bond length and dissociation energy in the case of a potential-energy curve recently proposed for the treatment of diatomic molecules. It consists of the sum of an inverse quadratic Yukawa potential and two screened Coulomb potentials. Our analysis shows that this potential exhibits obvious inconsistencies and that there is a simple way of rewriting it in a correct way. Our procedure is based on the application of well-known definitions of the molecular parameters just mentioned.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06257-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum mechanics has proved to be suitable for the study of molecular systems. In particular, the Born-Oppenheimer approximation enables one to separate the motions of electrons and nuclei. In the case of diatomic molecules, this approximation leads to the so-called potential-energy function that provides the interaction between the two nuclei. There have recently been great misconceptions about the meaning of certain features of the potential-energy function like the equilibrium bond length and dissociation energy. We discuss the meaning of equilibrium bond length and dissociation energy in the case of a potential-energy curve recently proposed for the treatment of diatomic molecules. It consists of the sum of an inverse quadratic Yukawa potential and two screened Coulomb potentials. Our analysis shows that this potential exhibits obvious inconsistencies and that there is a simple way of rewriting it in a correct way. Our procedure is based on the application of well-known definitions of the molecular parameters just mentioned.

点评:“用NUFA方法解析Schrödinger联合势方程所选双原子分子(H \(_2\), CO, I \(_2\), NO)的能谱”
量子力学已被证明适合于研究分子系统。特别是,玻恩-奥本海默近似法使人们能够分离电子和原子核的运动。在双原子分子的情况下,这种近似导致了所谓的势能函数,它提供了两个原子核之间的相互作用。最近,人们对势能函数的某些特征,如平衡键长和解离能的含义有很大的误解。我们讨论了平衡键长和解离能在最近提出的用于处理双原子分子的势能曲线中的意义。它由逆二次汤川势和两个屏蔽库仑势的和组成。我们的分析表明,这个潜能表现出明显的不一致性,并且有一种简单的方法可以以正确的方式重写它。我们的程序是基于刚才提到的分子参数的众所周知的定义的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信