Dual Class-Aware Contrastive Federated Semi-Supervised Learning

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qi Guo;Di Wu;Yong Qi;Saiyu Qi
{"title":"Dual Class-Aware Contrastive Federated Semi-Supervised Learning","authors":"Qi Guo;Di Wu;Yong Qi;Saiyu Qi","doi":"10.1109/TMC.2024.3474732","DOIUrl":null,"url":null,"abstract":"Federated semi-supervised learning (FSSL), facilitates labeled clients and unlabeled clients jointly training a global model without sharing private data. Existing FSSL methods predominantly employ pseudo-labeling and consistency regularization to exploit the knowledge of unlabeled data, achieving notable success in raw data utilization. However, the effectiveness of these methods is challenged by large deviations between uploaded local models of labeled and unlabeled clients, as well as confirmation bias introduced by noisy pseudo-labels, both of which negatively affect the global model's performance. In this paper, we present a novel FSSL method called Dual Class-aware Contrastive Federated Semi-Supervised Learning (DCCFSSL). This method considers both the local class-aware distribution of each client's data and the global class-aware distribution of all clients’ data within the feature space. By implementing a dual class-aware contrastive module, DCCFSSL establishes a unified training objective for different clients to tackle large deviations and incorporates contrastive information in the feature space to mitigate confirmation bias. Additionally, DCCFSSL introduces an authentication-reweighted aggregation technique to improve the server's aggregation robustness. Our comprehensive experiments show that DCCFSSL outperforms current state-of-the-art methods on three benchmark datasets and surpasses the FedAvg with relabeled unlabeled clients on CIFAR-10, CIFAR-100, and STL-10 datasets.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1073-1089"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705896/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated semi-supervised learning (FSSL), facilitates labeled clients and unlabeled clients jointly training a global model without sharing private data. Existing FSSL methods predominantly employ pseudo-labeling and consistency regularization to exploit the knowledge of unlabeled data, achieving notable success in raw data utilization. However, the effectiveness of these methods is challenged by large deviations between uploaded local models of labeled and unlabeled clients, as well as confirmation bias introduced by noisy pseudo-labels, both of which negatively affect the global model's performance. In this paper, we present a novel FSSL method called Dual Class-aware Contrastive Federated Semi-Supervised Learning (DCCFSSL). This method considers both the local class-aware distribution of each client's data and the global class-aware distribution of all clients’ data within the feature space. By implementing a dual class-aware contrastive module, DCCFSSL establishes a unified training objective for different clients to tackle large deviations and incorporates contrastive information in the feature space to mitigate confirmation bias. Additionally, DCCFSSL introduces an authentication-reweighted aggregation technique to improve the server's aggregation robustness. Our comprehensive experiments show that DCCFSSL outperforms current state-of-the-art methods on three benchmark datasets and surpasses the FedAvg with relabeled unlabeled clients on CIFAR-10, CIFAR-100, and STL-10 datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信