{"title":"Dual Class-Aware Contrastive Federated Semi-Supervised Learning","authors":"Qi Guo;Di Wu;Yong Qi;Saiyu Qi","doi":"10.1109/TMC.2024.3474732","DOIUrl":null,"url":null,"abstract":"Federated semi-supervised learning (FSSL), facilitates labeled clients and unlabeled clients jointly training a global model without sharing private data. Existing FSSL methods predominantly employ pseudo-labeling and consistency regularization to exploit the knowledge of unlabeled data, achieving notable success in raw data utilization. However, the effectiveness of these methods is challenged by large deviations between uploaded local models of labeled and unlabeled clients, as well as confirmation bias introduced by noisy pseudo-labels, both of which negatively affect the global model's performance. In this paper, we present a novel FSSL method called Dual Class-aware Contrastive Federated Semi-Supervised Learning (DCCFSSL). This method considers both the local class-aware distribution of each client's data and the global class-aware distribution of all clients’ data within the feature space. By implementing a dual class-aware contrastive module, DCCFSSL establishes a unified training objective for different clients to tackle large deviations and incorporates contrastive information in the feature space to mitigate confirmation bias. Additionally, DCCFSSL introduces an authentication-reweighted aggregation technique to improve the server's aggregation robustness. Our comprehensive experiments show that DCCFSSL outperforms current state-of-the-art methods on three benchmark datasets and surpasses the FedAvg with relabeled unlabeled clients on CIFAR-10, CIFAR-100, and STL-10 datasets.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1073-1089"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705896/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated semi-supervised learning (FSSL), facilitates labeled clients and unlabeled clients jointly training a global model without sharing private data. Existing FSSL methods predominantly employ pseudo-labeling and consistency regularization to exploit the knowledge of unlabeled data, achieving notable success in raw data utilization. However, the effectiveness of these methods is challenged by large deviations between uploaded local models of labeled and unlabeled clients, as well as confirmation bias introduced by noisy pseudo-labels, both of which negatively affect the global model's performance. In this paper, we present a novel FSSL method called Dual Class-aware Contrastive Federated Semi-Supervised Learning (DCCFSSL). This method considers both the local class-aware distribution of each client's data and the global class-aware distribution of all clients’ data within the feature space. By implementing a dual class-aware contrastive module, DCCFSSL establishes a unified training objective for different clients to tackle large deviations and incorporates contrastive information in the feature space to mitigate confirmation bias. Additionally, DCCFSSL introduces an authentication-reweighted aggregation technique to improve the server's aggregation robustness. Our comprehensive experiments show that DCCFSSL outperforms current state-of-the-art methods on three benchmark datasets and surpasses the FedAvg with relabeled unlabeled clients on CIFAR-10, CIFAR-100, and STL-10 datasets.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.