Xin Wang;Yanhan Wang;Ming Yang;Feng Li;Xiaoming Wu;Lisheng Fan;Shibo He
{"title":"FedSiam-DA: Dual-Aggregated Federated Learning via Siamese Network for Non-IID Data","authors":"Xin Wang;Yanhan Wang;Ming Yang;Feng Li;Xiaoming Wu;Lisheng Fan;Shibo He","doi":"10.1109/TMC.2024.3472898","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is an effective mobile edge computing framework that enables multiple participants to collaboratively train intelligent models, without requiring large amounts of data transmission while protecting privacy. However, FL encounters challenges due to non-independent and identically distributed (non-IID) data from different participants. The existing methods, whether focusing on local training or global aggregation, often suffer from insufficient unilateral optimization. Achieving effective local-global collaborative optimization, particularly in the absence of additional reference models or datasets, is both crucial and challenging. To address this, we propose a novel approach: \n<bold>D</b>\nual-\n<bold>A</b>\nggregated \n<bold>Fed</b>\nerated learning based on a triple \n<bold>Siam</b>\nese network (\n<bold>FedSiam-DA</b>\n). This method enhances the FL algorithm on both client and server sides. On the client side, we establish a triple Siamese network incorporating a stop-gradient scheme, which leverages a contrastive learning strategy to control the update directions of local models. On the server side, we introduce a dual aggregation mechanism with dynamic weights for local updates, improving the global model’s ability to assimilate personalized knowledge from local models. Extensive experiments on multiple benchmark datasets demonstrate that FedSiam-DA significantly improves model performance under non-IID data conditions compared to existing methods.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"985-998"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704054/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) is an effective mobile edge computing framework that enables multiple participants to collaboratively train intelligent models, without requiring large amounts of data transmission while protecting privacy. However, FL encounters challenges due to non-independent and identically distributed (non-IID) data from different participants. The existing methods, whether focusing on local training or global aggregation, often suffer from insufficient unilateral optimization. Achieving effective local-global collaborative optimization, particularly in the absence of additional reference models or datasets, is both crucial and challenging. To address this, we propose a novel approach:
D
ual-
A
ggregated
Fed
erated learning based on a triple
Siam
ese network (
FedSiam-DA
). This method enhances the FL algorithm on both client and server sides. On the client side, we establish a triple Siamese network incorporating a stop-gradient scheme, which leverages a contrastive learning strategy to control the update directions of local models. On the server side, we introduce a dual aggregation mechanism with dynamic weights for local updates, improving the global model’s ability to assimilate personalized knowledge from local models. Extensive experiments on multiple benchmark datasets demonstrate that FedSiam-DA significantly improves model performance under non-IID data conditions compared to existing methods.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.