ScooterID: Posture-Based Continuous User Identification From Mobility Scooter Rides

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Devan Shah;Ruoqi Huang;Nisha Vinayaga-Sureshkanth;Tingting Chen;Murtuza Jadliwala
{"title":"ScooterID: Posture-Based Continuous User Identification From Mobility Scooter Rides","authors":"Devan Shah;Ruoqi Huang;Nisha Vinayaga-Sureshkanth;Tingting Chen;Murtuza Jadliwala","doi":"10.1109/TMC.2024.3473609","DOIUrl":null,"url":null,"abstract":"Mobility scooters serve as a powerful last-mile transportation tool for people with mobility challenges. Given the unique riding behavior and posture of mobility scooter riders, such user-specific mobility scooter ride data has tremendous potential towards the design of continuous user identification and authentication mechanisms. However, there have been no prior research efforts in the literature exploring this unique modality for the design of continuous user identification techniques. To address this gap, this paper proposes \n<italic>ScooterID</i>\n, the first framework which employs rider posture data collected from cameras on mobility scooters to continuously identify (and authenticate) users/riders. As part of this framework, a machine learning based model comprising of a spatio-temporal Graph Convolutional Network and a body-part-informed encoder is designed to effectively capture a user’s subtle upper-body movements during mobility scooter rides into discriminating embedding vectors. These embeddings can then be used to reliably and continuously identify and authenticate users/riders. Experiments with real-world mobility scooter ride data show that \n<italic>ScooterID</i>\n achieves high levels of authentication accuracy with few enrollment video samples. \n<italic>ScooterID</i>\n also performs efficiently on resource-constrained devices (e.g., Raspberry Pis) and is robust against adversarial perturbations to authentication inputs.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"970-984"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704617/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Mobility scooters serve as a powerful last-mile transportation tool for people with mobility challenges. Given the unique riding behavior and posture of mobility scooter riders, such user-specific mobility scooter ride data has tremendous potential towards the design of continuous user identification and authentication mechanisms. However, there have been no prior research efforts in the literature exploring this unique modality for the design of continuous user identification techniques. To address this gap, this paper proposes ScooterID , the first framework which employs rider posture data collected from cameras on mobility scooters to continuously identify (and authenticate) users/riders. As part of this framework, a machine learning based model comprising of a spatio-temporal Graph Convolutional Network and a body-part-informed encoder is designed to effectively capture a user’s subtle upper-body movements during mobility scooter rides into discriminating embedding vectors. These embeddings can then be used to reliably and continuously identify and authenticate users/riders. Experiments with real-world mobility scooter ride data show that ScooterID achieves high levels of authentication accuracy with few enrollment video samples. ScooterID also performs efficiently on resource-constrained devices (e.g., Raspberry Pis) and is robust against adversarial perturbations to authentication inputs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信