Attention-Based SIC Ordering and Power Allocation for Non-Orthogonal Multiple Access Networks

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Liang Huang;Bincheng Zhu;Runkai Nan;Kaikai Chi;Yuan Wu
{"title":"Attention-Based SIC Ordering and Power Allocation for Non-Orthogonal Multiple Access Networks","authors":"Liang Huang;Bincheng Zhu;Runkai Nan;Kaikai Chi;Yuan Wu","doi":"10.1109/TMC.2024.3470828","DOIUrl":null,"url":null,"abstract":"Non-orthogonal multiple access (NOMA) emerges as a superior technology for enhancing spectral efficiency, reducing latency, and improving connectivity compared to orthogonal multiple access. In NOMA networks, successive interference cancellation (SIC) plays a crucial role in decoding user signals sequentially. The challenge lies in the joint optimization of SIC ordering and power allocation, a task complicated by the factorial nature of ordering combinations. This study introduces an innovative solution, the Attention-based SIC Ordering and Power Allocation (ASOPA) framework, targeting an uplink NOMA network with dynamic SIC ordering. ASOPA aims to maximize weighted proportional fairness by employing deep reinforcement learning, strategically decomposing the problem into two manageable subproblems: SIC ordering optimization and optimal power allocation. We use an attention-based neural network to process real-time channel gains and user weights, determining the SIC decoding order for each user. A baseline network, serving as a mimic model, aids in the reinforcement learning process. Once the SIC ordering is established, the power allocation subproblem transforms into a convex optimization problem, enabling efficient calculation of optimal transmit power for all users. Extensive simulations validate ASOPA’s efficacy, demonstrating a performance closely paralleling the exhaustive method, with over 97% confidence in normalized network utility. Compared to the current state-of-the-art implementation, i.e., Tabu search, ASOPA achieves over 97.5% network utility of Tabu search. Furthermore, ASOPA has two orders of magnitude less execution latency than Tabu search when \n<inline-formula><tex-math>$N=10$</tex-math></inline-formula>\n and even three orders magnitude less execution latency less than Tabu search when \n<inline-formula><tex-math>$N=20$</tex-math></inline-formula>\n . Notably, ASOPA maintains a low execution latency of approximately 50 milliseconds in a ten-user NOMA network, aligning with static SIC ordering algorithms. Furthermore, ASOPA demonstrates superior performance over baseline algorithms besides Tabu search in various NOMA network configurations, including scenarios with imperfect channel state information, multiple base stations, and multiple-antenna setups. These results underscore the robustness and effectiveness of ASOPA, demonstrating its ability to ability to achieve good performance across various NOMA network environments.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"939-955"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10700682/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-orthogonal multiple access (NOMA) emerges as a superior technology for enhancing spectral efficiency, reducing latency, and improving connectivity compared to orthogonal multiple access. In NOMA networks, successive interference cancellation (SIC) plays a crucial role in decoding user signals sequentially. The challenge lies in the joint optimization of SIC ordering and power allocation, a task complicated by the factorial nature of ordering combinations. This study introduces an innovative solution, the Attention-based SIC Ordering and Power Allocation (ASOPA) framework, targeting an uplink NOMA network with dynamic SIC ordering. ASOPA aims to maximize weighted proportional fairness by employing deep reinforcement learning, strategically decomposing the problem into two manageable subproblems: SIC ordering optimization and optimal power allocation. We use an attention-based neural network to process real-time channel gains and user weights, determining the SIC decoding order for each user. A baseline network, serving as a mimic model, aids in the reinforcement learning process. Once the SIC ordering is established, the power allocation subproblem transforms into a convex optimization problem, enabling efficient calculation of optimal transmit power for all users. Extensive simulations validate ASOPA’s efficacy, demonstrating a performance closely paralleling the exhaustive method, with over 97% confidence in normalized network utility. Compared to the current state-of-the-art implementation, i.e., Tabu search, ASOPA achieves over 97.5% network utility of Tabu search. Furthermore, ASOPA has two orders of magnitude less execution latency than Tabu search when $N=10$ and even three orders magnitude less execution latency less than Tabu search when $N=20$ . Notably, ASOPA maintains a low execution latency of approximately 50 milliseconds in a ten-user NOMA network, aligning with static SIC ordering algorithms. Furthermore, ASOPA demonstrates superior performance over baseline algorithms besides Tabu search in various NOMA network configurations, including scenarios with imperfect channel state information, multiple base stations, and multiple-antenna setups. These results underscore the robustness and effectiveness of ASOPA, demonstrating its ability to ability to achieve good performance across various NOMA network environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信