Multi-Modal Image and Radio Frequency Fusion for Optimizing Vehicle Positioning

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ouwen Huan;Tao Luo;Mingzhe Chen
{"title":"Multi-Modal Image and Radio Frequency Fusion for Optimizing Vehicle Positioning","authors":"Ouwen Huan;Tao Luo;Mingzhe Chen","doi":"10.1109/TMC.2024.3469252","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle can communicate with only one BS, and hence, it can upload its estimated CSI to only its associated BS. Each BS is equipped with a set of cameras, such that it can collect a small number of labeled CSI, a large number of unlabeled CSI, and the images taken by cameras. To exploit the unlabeled CSI data and position labels obtained from images, we design an meta-learning based hard expectation-maximization (EM) algorithm. Specifically, since we do not know the corresponding relationship between unlabeled CSI and the multiple vehicle locations in images, we formulate the calculation of the training objective as a minimum matching problem. To reduce the impact of label noises caused by incorrect matching between unlabeled CSI and vehicle locations obtained from images and achieve better convergence, we introduce a weighted loss function on the unlabeled datasets, and study the use of a meta-learning algorithm for computing the weighted loss. Subsequently, the model parameters are updated according to the weighted loss function of unlabeled CSI samples and their matched position labels obtained from images. Simulation results show that the proposed method can reduce the positioning error by up to 61% compared to a baseline that does not use images and uses only CSI fingerprint for vehicle positioning.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"696-708"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10696965/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle can communicate with only one BS, and hence, it can upload its estimated CSI to only its associated BS. Each BS is equipped with a set of cameras, such that it can collect a small number of labeled CSI, a large number of unlabeled CSI, and the images taken by cameras. To exploit the unlabeled CSI data and position labels obtained from images, we design an meta-learning based hard expectation-maximization (EM) algorithm. Specifically, since we do not know the corresponding relationship between unlabeled CSI and the multiple vehicle locations in images, we formulate the calculation of the training objective as a minimum matching problem. To reduce the impact of label noises caused by incorrect matching between unlabeled CSI and vehicle locations obtained from images and achieve better convergence, we introduce a weighted loss function on the unlabeled datasets, and study the use of a meta-learning algorithm for computing the weighted loss. Subsequently, the model parameters are updated according to the weighted loss function of unlabeled CSI samples and their matched position labels obtained from images. Simulation results show that the proposed method can reduce the positioning error by up to 61% compared to a baseline that does not use images and uses only CSI fingerprint for vehicle positioning.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信