Jakub Žádník;Michel Kieffer;Anthony Trioux;Markku Mäkitalo;Pekka Jääskeläinen
{"title":"CV-Cast: Computer Vision–Oriented Linear Coding and Transmission","authors":"Jakub Žádník;Michel Kieffer;Anthony Trioux;Markku Mäkitalo;Pekka Jääskeläinen","doi":"10.1109/TMC.2024.3478048","DOIUrl":null,"url":null,"abstract":"Remote inference allows lightweight edge devices, such as autonomous drones, to perform vision tasks exceeding their computational, energy, or processing delay budget. In such applications, reliable transmission of information is challenging due to high variations of channel quality. Traditional approaches involving spatio-temporal transforms, quantization, and entropy coding followed by digital transmission may be affected by a sudden decrease in quality (the \n<italic>digital cliff</i>\n) when the channel quality is less than expected during design. This problem can be addressed by using Linear Coding and Transmission (LCT), a joint source and channel coding scheme relying on linear operators only, allowing to achieve reconstructed per-pixel error commensurate with the wireless channel quality. In this paper, we propose CV-Cast: the first LCT scheme optimized for computer vision task accuracy instead of per-pixel distortion. Using this approach, for instance at 10 dB channel signal-to-noise ratio, CV-Cast requires transmitting 28% less symbols than a baseline LCT scheme in semantic segmentation and 15% in object detection tasks. Simulations involving a realistic 5G channel model confirm the smooth decrease in accuracy achieved with CV-Cast, while images encoded by JPEG or learned image coding (LIC) and transmitted using classical schemes at low Eb/N0 are subject to digital cliff.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1149-1162"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10719663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10719663/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Remote inference allows lightweight edge devices, such as autonomous drones, to perform vision tasks exceeding their computational, energy, or processing delay budget. In such applications, reliable transmission of information is challenging due to high variations of channel quality. Traditional approaches involving spatio-temporal transforms, quantization, and entropy coding followed by digital transmission may be affected by a sudden decrease in quality (the
digital cliff
) when the channel quality is less than expected during design. This problem can be addressed by using Linear Coding and Transmission (LCT), a joint source and channel coding scheme relying on linear operators only, allowing to achieve reconstructed per-pixel error commensurate with the wireless channel quality. In this paper, we propose CV-Cast: the first LCT scheme optimized for computer vision task accuracy instead of per-pixel distortion. Using this approach, for instance at 10 dB channel signal-to-noise ratio, CV-Cast requires transmitting 28% less symbols than a baseline LCT scheme in semantic segmentation and 15% in object detection tasks. Simulations involving a realistic 5G channel model confirm the smooth decrease in accuracy achieved with CV-Cast, while images encoded by JPEG or learned image coding (LIC) and transmitted using classical schemes at low Eb/N0 are subject to digital cliff.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.