CV-Cast: Computer Vision–Oriented Linear Coding and Transmission

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jakub Žádník;Michel Kieffer;Anthony Trioux;Markku Mäkitalo;Pekka Jääskeläinen
{"title":"CV-Cast: Computer Vision–Oriented Linear Coding and Transmission","authors":"Jakub Žádník;Michel Kieffer;Anthony Trioux;Markku Mäkitalo;Pekka Jääskeläinen","doi":"10.1109/TMC.2024.3478048","DOIUrl":null,"url":null,"abstract":"Remote inference allows lightweight edge devices, such as autonomous drones, to perform vision tasks exceeding their computational, energy, or processing delay budget. In such applications, reliable transmission of information is challenging due to high variations of channel quality. Traditional approaches involving spatio-temporal transforms, quantization, and entropy coding followed by digital transmission may be affected by a sudden decrease in quality (the \n<italic>digital cliff</i>\n) when the channel quality is less than expected during design. This problem can be addressed by using Linear Coding and Transmission (LCT), a joint source and channel coding scheme relying on linear operators only, allowing to achieve reconstructed per-pixel error commensurate with the wireless channel quality. In this paper, we propose CV-Cast: the first LCT scheme optimized for computer vision task accuracy instead of per-pixel distortion. Using this approach, for instance at 10 dB channel signal-to-noise ratio, CV-Cast requires transmitting 28% less symbols than a baseline LCT scheme in semantic segmentation and 15% in object detection tasks. Simulations involving a realistic 5G channel model confirm the smooth decrease in accuracy achieved with CV-Cast, while images encoded by JPEG or learned image coding (LIC) and transmitted using classical schemes at low Eb/N0 are subject to digital cliff.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1149-1162"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10719663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10719663/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Remote inference allows lightweight edge devices, such as autonomous drones, to perform vision tasks exceeding their computational, energy, or processing delay budget. In such applications, reliable transmission of information is challenging due to high variations of channel quality. Traditional approaches involving spatio-temporal transforms, quantization, and entropy coding followed by digital transmission may be affected by a sudden decrease in quality (the digital cliff ) when the channel quality is less than expected during design. This problem can be addressed by using Linear Coding and Transmission (LCT), a joint source and channel coding scheme relying on linear operators only, allowing to achieve reconstructed per-pixel error commensurate with the wireless channel quality. In this paper, we propose CV-Cast: the first LCT scheme optimized for computer vision task accuracy instead of per-pixel distortion. Using this approach, for instance at 10 dB channel signal-to-noise ratio, CV-Cast requires transmitting 28% less symbols than a baseline LCT scheme in semantic segmentation and 15% in object detection tasks. Simulations involving a realistic 5G channel model confirm the smooth decrease in accuracy achieved with CV-Cast, while images encoded by JPEG or learned image coding (LIC) and transmitted using classical schemes at low Eb/N0 are subject to digital cliff.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信