Enhanced Lithographic Hotspot Detection via Multi-Task Deep Learning With Synthetic Pattern Generation

Xinguang Zhang;Shiyang Chen;Zhouhang Shao;Yongjie Niu;Li Fan
{"title":"Enhanced Lithographic Hotspot Detection via Multi-Task Deep Learning With Synthetic Pattern Generation","authors":"Xinguang Zhang;Shiyang Chen;Zhouhang Shao;Yongjie Niu;Li Fan","doi":"10.1109/OJCS.2024.3510555","DOIUrl":null,"url":null,"abstract":"Lithographic hotspot detection is crucial for ensuring manufacturability and yield in advanced integrated circuit (IC) designs. While machine learning approaches have shown promise, they often struggle with detecting truly-never-seen-before (TNSB) hotspots and reducing false alarms on hard-to-classify (HTC) patterns. This article presents a novel multi-task deep learning framework for lithographic hotspot detection that addresses these challenges. Our key contributions include: (1) A synthetic pattern generation method based on early design space exploration (EDSE) to augment training data and improve TNSB hotspot detection; (2) A multi-task convolutional neural network architecture that jointly performs hotspot classification and localization; and (3) An adaptive loss function that balances hotspot detection accuracy and false alarm reduction. Experimental results on the ICCAD-2019 benchmark dataset demonstrate that our approach achieves 98.5% accuracy in hotspot detection with only 1.2% false alarm rate, significantly outperforming state-of-the-art methods. Furthermore, we show a 22% improvement in TNSB hotspot detection and a 5X reduction in false alarms on HTC patterns compared to previous techniques. The proposed framework provides a robust solution for lithographic hotspot detection in early stages of IC design, enabling more efficient design-for-manufacturability optimization.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"140-151"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772617","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772617/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithographic hotspot detection is crucial for ensuring manufacturability and yield in advanced integrated circuit (IC) designs. While machine learning approaches have shown promise, they often struggle with detecting truly-never-seen-before (TNSB) hotspots and reducing false alarms on hard-to-classify (HTC) patterns. This article presents a novel multi-task deep learning framework for lithographic hotspot detection that addresses these challenges. Our key contributions include: (1) A synthetic pattern generation method based on early design space exploration (EDSE) to augment training data and improve TNSB hotspot detection; (2) A multi-task convolutional neural network architecture that jointly performs hotspot classification and localization; and (3) An adaptive loss function that balances hotspot detection accuracy and false alarm reduction. Experimental results on the ICCAD-2019 benchmark dataset demonstrate that our approach achieves 98.5% accuracy in hotspot detection with only 1.2% false alarm rate, significantly outperforming state-of-the-art methods. Furthermore, we show a 22% improvement in TNSB hotspot detection and a 5X reduction in false alarms on HTC patterns compared to previous techniques. The proposed framework provides a robust solution for lithographic hotspot detection in early stages of IC design, enabling more efficient design-for-manufacturability optimization.
基于合成模式生成的多任务深度学习增强光刻热点检测
在先进集成电路(IC)设计中,光刻热点检测是保证可制造性和良率的关键。虽然机器学习方法已经显示出了希望,但它们经常在检测从未见过的热点(TNSB)和减少难以分类(HTC)模式的误报方面遇到困难。本文提出了一种新的多任务深度学习框架,用于光刻热点检测,以解决这些挑战。我们的主要贡献包括:(1)基于早期设计空间探索(EDSE)的综合模式生成方法,以增强训练数据并改进TNSB热点检测;(2)联合进行热点分类和定位的多任务卷积神经网络架构;(3)平衡热点检测精度和虚警减少的自适应损失函数。在ICCAD-2019基准数据集上的实验结果表明,我们的方法在热点检测中达到98.5%的准确率,只有1.2%的误报率,显著优于目前最先进的方法。此外,与以前的技术相比,我们在TNSB热点检测方面提高了22%,在HTC模式上减少了5倍的误报。该框架为集成电路设计早期的光刻热点检测提供了强大的解决方案,实现了更有效的可制造性优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信