Xinguang Zhang;Shiyang Chen;Zhouhang Shao;Yongjie Niu;Li Fan
{"title":"Enhanced Lithographic Hotspot Detection via Multi-Task Deep Learning With Synthetic Pattern Generation","authors":"Xinguang Zhang;Shiyang Chen;Zhouhang Shao;Yongjie Niu;Li Fan","doi":"10.1109/OJCS.2024.3510555","DOIUrl":null,"url":null,"abstract":"Lithographic hotspot detection is crucial for ensuring manufacturability and yield in advanced integrated circuit (IC) designs. While machine learning approaches have shown promise, they often struggle with detecting truly-never-seen-before (TNSB) hotspots and reducing false alarms on hard-to-classify (HTC) patterns. This article presents a novel multi-task deep learning framework for lithographic hotspot detection that addresses these challenges. Our key contributions include: (1) A synthetic pattern generation method based on early design space exploration (EDSE) to augment training data and improve TNSB hotspot detection; (2) A multi-task convolutional neural network architecture that jointly performs hotspot classification and localization; and (3) An adaptive loss function that balances hotspot detection accuracy and false alarm reduction. Experimental results on the ICCAD-2019 benchmark dataset demonstrate that our approach achieves 98.5% accuracy in hotspot detection with only 1.2% false alarm rate, significantly outperforming state-of-the-art methods. Furthermore, we show a 22% improvement in TNSB hotspot detection and a 5X reduction in false alarms on HTC patterns compared to previous techniques. The proposed framework provides a robust solution for lithographic hotspot detection in early stages of IC design, enabling more efficient design-for-manufacturability optimization.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"140-151"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772617","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772617/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lithographic hotspot detection is crucial for ensuring manufacturability and yield in advanced integrated circuit (IC) designs. While machine learning approaches have shown promise, they often struggle with detecting truly-never-seen-before (TNSB) hotspots and reducing false alarms on hard-to-classify (HTC) patterns. This article presents a novel multi-task deep learning framework for lithographic hotspot detection that addresses these challenges. Our key contributions include: (1) A synthetic pattern generation method based on early design space exploration (EDSE) to augment training data and improve TNSB hotspot detection; (2) A multi-task convolutional neural network architecture that jointly performs hotspot classification and localization; and (3) An adaptive loss function that balances hotspot detection accuracy and false alarm reduction. Experimental results on the ICCAD-2019 benchmark dataset demonstrate that our approach achieves 98.5% accuracy in hotspot detection with only 1.2% false alarm rate, significantly outperforming state-of-the-art methods. Furthermore, we show a 22% improvement in TNSB hotspot detection and a 5X reduction in false alarms on HTC patterns compared to previous techniques. The proposed framework provides a robust solution for lithographic hotspot detection in early stages of IC design, enabling more efficient design-for-manufacturability optimization.