Revolutionizing User Authentication Exploiting Explainable AI and CTGAN-Based Keystroke Dynamics

Hussien Abdel Raouf;Mostafa M. Fouda;Mohamed I. Ibrahem
{"title":"Revolutionizing User Authentication Exploiting Explainable AI and CTGAN-Based Keystroke Dynamics","authors":"Hussien Abdel Raouf;Mostafa M. Fouda;Mohamed I. Ibrahem","doi":"10.1109/OJCS.2024.3513895","DOIUrl":null,"url":null,"abstract":"Due to the reliability and efficiency of keystroke dynamics, enterprises have adopted it widely in multi-factor authentication systems, effectively strengthening user authentication and thereby boosting the security of online and offline services. The existing works that detect imposter users suffer from performance and robustness degradation. Therefore, this article introduces a novel methodology to enhance user authentication and identify imposter users who attempt to have unauthorized access. We first use quantile transformation (QT) to mitigate outliers in the user's typing behavior that affects the authentication process and then employ conditional tabular generative adversarial networks (CTGAN) for data augmentation to learn the users' typing patterns better. Next, five accurate transfer learning models (VGG19, EfficientNetB0, Resnet50, MobileNetV2, and DenseNet121) are utilized for extracting effective features within the typing patterns, so our methodology can detect imposter users accurately and hence make precise decisions to enhance the user authentication process. Finally, we ensure transparency and trust in our user authentication methodology by incorporating explainable artificial intelligence (XAI), utilizing local interpretable model-agnostic explanations (LIME). Extensive experiments using a publicly available keystroke dynamics benchmark dataset from Carnegie Mellon University (CMU) showcase superior security performance and robustness using the proposed methodology compared to the state-of-the-art approaches.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"97-108"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the reliability and efficiency of keystroke dynamics, enterprises have adopted it widely in multi-factor authentication systems, effectively strengthening user authentication and thereby boosting the security of online and offline services. The existing works that detect imposter users suffer from performance and robustness degradation. Therefore, this article introduces a novel methodology to enhance user authentication and identify imposter users who attempt to have unauthorized access. We first use quantile transformation (QT) to mitigate outliers in the user's typing behavior that affects the authentication process and then employ conditional tabular generative adversarial networks (CTGAN) for data augmentation to learn the users' typing patterns better. Next, five accurate transfer learning models (VGG19, EfficientNetB0, Resnet50, MobileNetV2, and DenseNet121) are utilized for extracting effective features within the typing patterns, so our methodology can detect imposter users accurately and hence make precise decisions to enhance the user authentication process. Finally, we ensure transparency and trust in our user authentication methodology by incorporating explainable artificial intelligence (XAI), utilizing local interpretable model-agnostic explanations (LIME). Extensive experiments using a publicly available keystroke dynamics benchmark dataset from Carnegie Mellon University (CMU) showcase superior security performance and robustness using the proposed methodology compared to the state-of-the-art approaches.
革命性的用户认证利用可解释的AI和基于ctgan的击键动力学
由于击键动力学的可靠性和高效性,企业在多因素认证系统中广泛采用,有效地加强了用户认证,从而提高了在线和离线服务的安全性。现有的检测冒名顶替用户的工作受到性能和鲁棒性下降的影响。因此,本文介绍了一种新的方法来增强用户身份验证并识别试图进行未经授权访问的冒名顶替用户。我们首先使用分位数变换(QT)来缓解用户打字行为中影响身份验证过程的异常值,然后使用条件表格生成对抗网络(CTGAN)进行数据增强以更好地学习用户的打字模式。接下来,利用五个准确的迁移学习模型(VGG19、EfficientNetB0、Resnet50、MobileNetV2和DenseNet121)提取打字模式中的有效特征,因此我们的方法可以准确地检测冒名用户,从而做出精确的决策,以增强用户身份验证过程。最后,我们通过结合可解释的人工智能(XAI),利用本地可解释的模型不可知论解释(LIME),确保用户身份验证方法的透明度和信任度。使用卡内基梅隆大学(CMU)公开可用的击键动力学基准数据集进行的大量实验表明,与最先进的方法相比,使用所提出的方法具有卓越的安全性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信