A Multi-Stage Progressive Network for Hyperspectral Image Demosaicing and Denoising

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhangxi Xiong;Wei Li;Hanzheng Wang;Baochang Zhang;James E. Fowler
{"title":"A Multi-Stage Progressive Network for Hyperspectral Image Demosaicing and Denoising","authors":"Zhangxi Xiong;Wei Li;Hanzheng Wang;Baochang Zhang;James E. Fowler","doi":"10.1109/TCI.2024.3515844","DOIUrl":null,"url":null,"abstract":"While snapshot hyperspectral cameras are cheaper and faster than imagers based on pushbroom or whiskbroom spatial scanning, the output imagery from a snapshot camera typically has different spectral bands mapped to different spatial locations in a mosaic pattern, requiring a demosaicing process to be applied to generate the desired hyperspectral image with full spatial and spectral resolution. However, many existing demosaicing algorithms suffer common artifacts such as periodic striping or other forms of noise. To ameliorate these issues, a hyperspectral demosaicing framework that couples a preliminary demosaicing network with a separate multi-stage progressive denoising network is proposed, with both networks employing transformer and attention mechanisms. A multi-term loss function permits supervised network training to monitor not only performance of the preliminary demosaicing but also denoising at each stage. An extensive collection of experimental results demonstrate that the proposed approach produces demosaiced images with not only fewer visual artifacts but also improved performance with respect to several quantitative measures as compared to other state-of-the-art demosaicing methods from recent literature.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"1-10"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10791868/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

While snapshot hyperspectral cameras are cheaper and faster than imagers based on pushbroom or whiskbroom spatial scanning, the output imagery from a snapshot camera typically has different spectral bands mapped to different spatial locations in a mosaic pattern, requiring a demosaicing process to be applied to generate the desired hyperspectral image with full spatial and spectral resolution. However, many existing demosaicing algorithms suffer common artifacts such as periodic striping or other forms of noise. To ameliorate these issues, a hyperspectral demosaicing framework that couples a preliminary demosaicing network with a separate multi-stage progressive denoising network is proposed, with both networks employing transformer and attention mechanisms. A multi-term loss function permits supervised network training to monitor not only performance of the preliminary demosaicing but also denoising at each stage. An extensive collection of experimental results demonstrate that the proposed approach produces demosaiced images with not only fewer visual artifacts but also improved performance with respect to several quantitative measures as compared to other state-of-the-art demosaicing methods from recent literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信