Nighttime Person Re-Identification via Collaborative Enhancement Network With Multi-Domain Learning

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Andong Lu;Chenglong Li;Tianrui Zha;Xiao-Feng Wang;Jin Tang;Bin Luo
{"title":"Nighttime Person Re-Identification via Collaborative Enhancement Network With Multi-Domain Learning","authors":"Andong Lu;Chenglong Li;Tianrui Zha;Xiao-Feng Wang;Jin Tang;Bin Luo","doi":"10.1109/TIFS.2025.3527335","DOIUrl":null,"url":null,"abstract":"Prevalent nighttime person re-identification (ReID) methods typically combine image relighting and ReID networks in a sequential manner. However, their performance (recognition accuracy) is limited by the quality of relighting images and insufficient collaboration between image relighting and ReID tasks. To handle these problems, we propose a novel Collaborative Enhancement Network called CENet, which performs the multilevel feature interactions in a parallel framework, for nighttime person ReID. In particular, the designed parallel structure of CENet can not only avoid the impact of the quality of relighting images on ReID performance, but also allow us to mine the collaborative relations between image relighting and person ReID tasks. To this end, we integrate the multilevel feature interactions in CENet, where we first share the Transformer encoder to build the low-level feature interaction, and then perform the feature distillation that transfers the high-level features from image relighting to ReID, thereby alleviating the severe image degradation issue caused by the nighttime scenario while avoiding the impact of relighting images. In addition, the sizes of existing real-world nighttime person ReID datasets are limited, and large-scale synthetic ones exhibit substantial domain gaps with real-world data. To leverage both small-scale real-world and large-scale synthetic training data, we develop a multi-domain learning algorithm, which alternately utilizes both kinds of data to reduce the inter-domain difference in training procedure. Extensive experiments on two real nighttime datasets, Night600 and RGBNT<inline-formula> <tex-math>$201_{rgb}$ </tex-math></inline-formula>, and a synthetic nighttime ReID dataset are conducted to validate the effectiveness of CENet. We release the code and synthetic dataset at: <uri>https://github.com/Alexadlu/CENet</uri>.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1305-1319"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833796/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Prevalent nighttime person re-identification (ReID) methods typically combine image relighting and ReID networks in a sequential manner. However, their performance (recognition accuracy) is limited by the quality of relighting images and insufficient collaboration between image relighting and ReID tasks. To handle these problems, we propose a novel Collaborative Enhancement Network called CENet, which performs the multilevel feature interactions in a parallel framework, for nighttime person ReID. In particular, the designed parallel structure of CENet can not only avoid the impact of the quality of relighting images on ReID performance, but also allow us to mine the collaborative relations between image relighting and person ReID tasks. To this end, we integrate the multilevel feature interactions in CENet, where we first share the Transformer encoder to build the low-level feature interaction, and then perform the feature distillation that transfers the high-level features from image relighting to ReID, thereby alleviating the severe image degradation issue caused by the nighttime scenario while avoiding the impact of relighting images. In addition, the sizes of existing real-world nighttime person ReID datasets are limited, and large-scale synthetic ones exhibit substantial domain gaps with real-world data. To leverage both small-scale real-world and large-scale synthetic training data, we develop a multi-domain learning algorithm, which alternately utilizes both kinds of data to reduce the inter-domain difference in training procedure. Extensive experiments on two real nighttime datasets, Night600 and RGBNT $201_{rgb}$ , and a synthetic nighttime ReID dataset are conducted to validate the effectiveness of CENet. We release the code and synthetic dataset at: https://github.com/Alexadlu/CENet.
基于多领域学习的协同增强网络夜间人物再识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信