{"title":"On the Distance Sets Spanned by Sets of Dimension d/2 in $\\mathbb{R}^{d}$","authors":"Pablo Shmerkin, Hong Wang","doi":"10.1007/s00039-024-00696-5","DOIUrl":null,"url":null,"abstract":"<p>We establish the dimension version of Falconer’s distance set conjecture for sets of equal Hausdorff and packing dimension (in particular, for Ahlfors-regular sets) in all ambient dimensions. In dimensions <i>d</i>=2 or 3, we obtain the first explicit improvements over the classical 1/2 bound for the dimensions of distance sets of general Borel sets of dimension <i>d</i>/2. For example, we show that the set of distances spanned by a planar Borel set of Hausdorff dimension 1 has Hausdorff dimension at least <span>\\((\\sqrt{5}-1)/2\\approx 0.618\\)</span>. In higher dimensions we obtain explicit estimates for the lower Minkowski dimension of the distance sets of sets of dimension <i>d</i>/2. These results rely on new estimates for the dimensions of radial projections that may have independent interest.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00696-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the dimension version of Falconer’s distance set conjecture for sets of equal Hausdorff and packing dimension (in particular, for Ahlfors-regular sets) in all ambient dimensions. In dimensions d=2 or 3, we obtain the first explicit improvements over the classical 1/2 bound for the dimensions of distance sets of general Borel sets of dimension d/2. For example, we show that the set of distances spanned by a planar Borel set of Hausdorff dimension 1 has Hausdorff dimension at least \((\sqrt{5}-1)/2\approx 0.618\). In higher dimensions we obtain explicit estimates for the lower Minkowski dimension of the distance sets of sets of dimension d/2. These results rely on new estimates for the dimensions of radial projections that may have independent interest.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.